
yesnono&AboutyesTRUEyesyesyesWIndows Interface Language Help
FileWILyes27/10/95

Windows Interface Language
Reference Manual

Welcome to the Windows Interface Language Help file.    WIL is a complete systems control batch
language for the Windows operating system.    This help file contains a listing of WIL functions and
commands as well as information to help you get started.   

Before you can do anything useful with the WIL interpreter, you must have at least one script file to
interpret. You can create them with WinEdit (Wilson WindowWares optional text editor for programmers),
the Windows Notepad or another text editor.    If you need additional information on getting started, see
the WIL Tutorial below.   

Introduction
Foundations of WIL
Menu Files
WIL Tutorial
WIL Techniques
Language Components

Functions
Function & Statement Listing
Quick Function/Syntax Reference

APPENDIX A    Constants
APPENDIX B    Errors

Introduction

WHO uses WIL
WHY they use WIL
WHAT is WIL

Foundations of WIL
What is WIL?
Batch or Menu files?
Notational Conventions
WIL Language Elements
Contributors to the WIL Language

WIL Tutorial

Creating WIL Scripts
Running WIL Utilities
Running WIL System Utilities
What is a WIL Program?
Functions and Parameters
Displaying Text
Getting Input
Using Variables
Making Decisions
Control of Program Flow
Exploring WIL
Running Programs
Display and Input
Manipulating Windows
Files and Directories
Handling Errors
Selection Methods
Running DOS Programs
Sending Keystrokes to Programs
Our Completed WIL File

WIL Techniques

Programming Tips
Recovering from Cancel
Terminating WIL processing
Carriage Return Line Feed
Extension Associations and the Run functions
WinExec, LoadModule and ShellExecute
Debug
Internal Control Functions
Partial Window Names
System.ini and its device=    lines
Dividing Floating Point Numbers
File Delimiters
Sounds

Language Components
WIL statements are constructed from constants, variables, operators, functions, commands, and
comments.

Each line in a WIL program can be up to 255 characters long.

The programming language supports both integer and string constants.

Floating Point Constants
Integer Constants
String Constants
Predefined Constants
Identifiers
Variables
Lists
Keywords
Operators

Unary operators (integers and floating point numbers):
Unary operators (integers only):
Binary logical operators (integers only):
Binary arithmetic operators    (integers and floating point numbers):
Binary relational operators:
Assignment operator:

Precedence and Evaluation Order
Comments
Statements
Substitution
Function Parameters
Error Handling

Function & Statement Listing
A listing of the WIL commands according to what type of function they perform.

Arithmetic Functions
Binary Functions
Clipboard Handling
DDE Functions
Directory Management
Disk Drive Management
Displaying Information
DLLCall
File Management
Important Functions
Inputting Information
InterProgram Communication
Menu Management
Miscellaneous Functions
Multimedia Functions
Network Functions
OLE2.0
Process Control
Program Management
Registration Functions
String Handling
System Information
Time Functions
Window Management

WHO uses WIL
PC professionals who operate in a Microsoft Windows environment.

WHY they use WIL
¨ They write small batch files to use as system management utilities. Connecting to network
servers, printing batch jobs out at odd hours, upgrading software, and metering application use are just a
few of the chores handled by the system utilities made with WIL.

¨ They write major business applications. Experience with small utilities encourages the leap to
major projects. WIL is the common glue that can bind any off-the-shelf or custom Windows and DOS
programs together. With WIL as the common glue, software from any vendors can be combined to make
a solution. Automated business solutions save time, save money, and make money for the companies
using them to leverage their investment in hardware, software and people.

¨ They use WIL to become more effective and powerful in their careers as PC professionals. An
effective system utility programming tool like WIL enables the quick and responsive solutions that are the
hallmark of the true professional.

WHAT is WIL
Windows Automation with the Simplicity of Batch File Programming.

Powerful, easy-to-learn procedural language

It Can:

* Run Windows and DOS programs.

* Send keystrokes directly to Windows and DOS applications.

* Rearrange, resize, hide, and close windows.

* Run programs either concurrently or sequentially.

* Display information to the user in various formats.

* Prompt the user for any needed input.

* Present scrollable file and directory lists.

* Copy, move, delete, and rename files.

* Read and write files directly.

* Copy text to and from the Clipboard.

* Perform string and arithmetic operations.

* Make branching decisions based upon numerous factors.

What is WIL?
WIL is a universal macro language that works from Windows applications. It can manipulate Windows
applications, DOS applications, PC hardware operations, and virtually any other operations Windows
programs are capable of.    WIL is available as an independent macro scripting language. WinBatch and
WinBatch Compiler are the only two products that contain WIL alone.   

WIL is also available as a component of other Windows applications. These include WinEdit, File
Commander, Clock Manager, and Command Post. WIL can be added to any Windows application. For
each application, custom extensions to the WIL language add functions unique to that application and its
use.   

This manual is a function reference for the WIL language itself, as well as a guide to creating basic WIL
programs.    Because WIL can be implemented in many different ways, with several different applications,
this manual must at times be somewhat general.    Therefore, you will need to refer to your specific
application's User's Guide.    Your product-specific documentation supersedes the information provided in
this Reference Manual.

Batch or Menu files?
WIL can be implemented in two basic "flavors": batch and menu. WinBatch is an example of a batch file
implementation.

WinEdit, File Commander, Command Post, and Clock Manager are examples of menu file
implementations.

Batch Files
In a batch implementation, WIL statements are written as a script in a text file. This list is turned into a
series of operations by the WinBatch script interpreter. The WinBatch program opens and runs this file
and converts it into a series of step-by-step operations. The WinBatch Compiler takes this process one
step further by combining the interpreter and the script to make a single Windows program. This can be
run like any other Windows program; free from license fees and royalties to Wilson WindowWare.

Menu Files
In a menu system, WIL commands are defined in one or more menu files, each of which can contain
many different tasks, or menu items.    In a batch system, each task is contained in a separate batch file.
In this manual, we will use the term WIL program to refer to both an individual menu item and to a batch
file, each of which performs an individual task (which can, in turn, consist of many different commands).   
We will use the term WIL Interpreter to refer to that part of your application which is responsible for
executing WIL programs.

The symbol {*M} will be used to indicate a function or a section of the manual which applies only to menu-
based implementations of the WIL Interpreter.

Note:    WinBatch and Clock Manager are batch file applications, File Commander, WinEdit and
Command Post are menu file applications.

Notational Conventions
Throughout this manual, we use the following conventions to distinguish elements of text:

ALL-CAPS
Used for filenames.

Boldface
Used for important points, programs, function names, and parts of syntax that must appear as
shown.

system
Used for items in menus and dialogs, as they appear to the user.

Small fixed-width
Used for WIL sample code.

Italics
Used for emphasis, and to liven up the documentation just a bit.

Menu Files

This section of the manual shows how to create WIL menu files.    It is presented here so that you will be
able to follow along with the tutorial material which follows.    It is not important at this point to understand
the actual commands which are shown in the menus.

If you are using a batch file-based implementation of WIL, you can skip this section and move on
to the WIL Tutorial.   

Menu File Structure
Modifying Menus
Menu Hotkeys
Menu Structure
Menu Items

Menu File Structure
WIL menus are defined in standard ASCII text files (the kind created by Notepad).    See your product
documentation for the name of the default menu file that it uses.

Every menu file contains one or more menu items which appear in drop-down menus.    They may also
contain top-level menu names which show up in a main menu bar (refer to your product documentation
for more information).    Each menu item consists of a title which identifies the item, followed by one or
more lines of menu code which the WIL Interpreter will execute when you choose the item.

Your application probably included a pre-defined sample menu, and you should refer to it as a practical
example of correct menu structure.    Here is an extremely simple menu file:
&Games
 &Solitaire

Run("sol.exe", "")

The first line, &Games, begins in column 1, and therefore defines a top-level menu item.    Depending on
the product you are using, it may either appear on a menu bar or it may appear on the first-level drop-
down menu.    The ampersand (&) is optional; it defines an Alt-key combination for the entry (Alt-G in this
example).    It will appear in the menu as Games.
The second line, &Solitaire, begins in column 2, and defines the title for an individual menu item.    Again,
the ampersand (&) is optional, and defines an Alt-key combination of Alt-S.    This item will appear in the
menu as Solitaire.
The third line, Run("sol.exe", ""), is the actual code which will be executed when this menu item is
selected.    Like all menu code, it must be indented at least four spaces (i.e., it must begin in column 5 or
higher).    This third line is really the entire WIL program; the two lines above it are simply titles which
define the position of the program (i.e., the menu item) in the overall menu structure.

Here's a slightly expanded version of the program:
&Games
 &Solitaire

Display(1, "Game Time", "About to play Solitaire")
Run("sol.exe", "")

Here, we've simply added a line of code, changing this into a two-line program.    Notice that each
additional line of code is still indented the same four spaces.

Now, let's look at a menu file which contains two menu items:
&Games
 &Solitaire

Run("sol.exe", "")
 &Minesweeper

Run("winmine.exe", "")

We've added a new menu item, Minesweeper, which begins in column 2 (like Solitaire) and will appear
under the top-level menu item Games (like Solitaire).

To add a new top-level menu item, just create a new entry beginning in column 1:

&Games
 &Solitaire

Run("sol.exe", "")
 &Minesweeper

Run("winmine.exe", "")

&Applications
 &Notepad

Run("notepad.exe", "")
 &WinEdit

Run("winedit.exe", "")

Now there are two top-level menu titles, Games and Applications, each of which contains two individual
items (the blank line between Games and Applications is not necessary, but is there just for readability).

In Win95 a comment can be displayed on the status bar in the Windows Explorer.    This works only for
top level menu items.    The comment must be on the same line as the top level item.    For example, the
menu item below is a main menu for running Games, "Killers of Time" is the comment that appears in the
status bar.
&Games ;Killers of Time
 &Solitaire

Run("sol.exe", "")

In addition to top-level menus, you can optionally define one or two levels of submenus.    The titles for
the first-level and second-level submenus must begin in columns 2, and 3, respectively, and the individual
menu items they contain must be indented one additional column.    For example:
&Applications
 &Editors
 &Notepad

Run("notepad.exe", "")
 &WinEdit

Run("winedit.exe", "")

 &Excel
Run("excel.exe", "")

In the above example, Editors is a submenu (which begins in column 2), which contains two menu items
(which begin in column 3).    Excel also begins in column 2, but since it does not have any submenus
defined below it, it is a bottom-level (i.e., individual) menu item.    Here's an even more complex example:
&Applications

 &Editors
 &Notepad

Run("notepad.exe", "")
 &WinEdit

Run("winedit.exe", "")

 |&Spreadsheets
 &Windows-based
 &Excel

Run("excel.exe", "")

 _&DOS-based
 &Quattro

Run("q.exe", "")

We've added an additional level of submenus under Spreadsheets, so that the bottom-level menu items
(Excel and Quattro) now begin in column 4.    There are also two special symbols presented in this menu:
the underscore (_), which causes a horizontal separator line to be drawn above the associated menu title,
and the vertical bar (|), which causes the associated menu title to appear in a new column.

Some applications allow you to place an individual (bottom-level) menu item in column 1:
&Notepad

Run("notepad.exe", "")

in which case it will appear on the top-level menu, but will be executed immediately upon being selected
(i.e., there will be no drop-down menu).

Modifying Menus
As stated earlier, menu files must be created and edited with an editor, such as Notepad, that is capable
of saving files in pure ASCII text format.    After you have edited your menu, it must be reloaded into
memory for the changes to take effect.    You may be able to do this manually, via the application's control
menu (see your product documentation for information).    Or, you can have a menu item use the Reload
function.    Otherwise, the menus will be reloaded automatically the next time you execute any menu item. 
However, if the menus are reloaded automatically, the WIL Interpreter will not be able to determine which
menu item you had just selected, and it will therefore display a message telling you that you need to re-
select it.

Menu Hotkeys
In addition to the standard methods for executing a menu item (double-clicking on it, highlighting it and
pressing Enter, or using Alt + the underlined letter), you may be able to define optional hotkeys for your
menu items (depending on the implementation of WIL in the product you are using), which will cause an
item to be executed immediately upon pressing the designated hot key.    Hotkeys are defined by following
the menu item with a backslash (\) and then the hotkey:
&Accessories
 &Notepad \ {F2}

Run("notepad.exe", "")
 &Calculator \ ^C

Run("calc.exe", "")

In the above example, the F2 key is defined as the hotkey for Notepad, and Ctrl-C is defined as the
hotkey for Calculator.

Most single keys and key combinations may be used as hotkeys, except for the F10 key, and except for
Alt and Alt-Shift key combinations (although you may use AltCtrl key combinations).    Refer to the
SendKey function for a list of special keycodes which may also be used as hot keys.

If you always access a menu item by using its hotkey, you may not need or want the menu item to appear
in the pull-down menus.    If so, you can make it a non-displayed menu item by placing a @ symbol in
front of the title.    For example:
&Accessories
 @Notepad \ {F2}

Run("notepad.exe", "")

In this case, Notepad would not appear in the pull-down menus, but could still be accessed by using the
F2 hotkey.

Note:    Hotkeys and non-displayed menu items may not work in all implementations of the WIL
Interpreter.

Menu Structure {*M}
Menus are defined in a menu file.    Each menu file consists of one or more lines of menu statements.   
Each line is terminated with a carriage return / line feed (CRLF) combination, and can be up to 255
characters long.

There are two main parts of a menu file:

The first section, which is optional, is the initialization code.    This section is executed once when the
menu is first loaded and run.    It's located before the first menu item declaration.

The remainder of the menu file consists of menu item titles and their associated statements.    The code
under each menu title is executed when the corresponding menu item is selected.    Execution begins at
the first statement under a menu item and continues up to the definition of the next item.

Menu Items {*M}
Menu titles can consist of letters, digits, spaces, punctuation marks     in fact any displayable ANSI
characters your text editor can create.

There are special characters you can use to modify the appearance of items in the menus.

&      Causes the following character to be underlined in the menu item.    The user can select
the item by pressing the ALT key with the character instead of using the mouse.

| In a main menu, puts this item on a new line.
| In a dropdown menu, this item starts a new column.
_ Used to create a horizontal bar (in dropdown menus only).

@ Causes the item not to be displayed in the menu.

In order to identify a menu item within a WIL statement, each menu item you define has an associated
menu name.    The menu name is built using only the letters and digits that make up the menu title.   
Menu names are case-insensitive; you don't have to worry about how the actual menu title is capitalized
in order to identify it.

For menu items in a popup menu, the menu name consists of its parent menu's name, plus the popup
menu item's name concatenated at the end.

These menu names are valid as soon as the menu file is loaded, so you can use the menu management
functions in the initialization code before the menus even appear.

Top-level menu names must begin in column 1.    Submenu names are optional, and if used must begin in
column 2-4; each column of indentation represents an additional level of submenu nesting.    Actual menu
code must begin in column 5 or higher, and must appear directly under the menu name to which it
belongs.

Example:
Set &User Level

PW=AskLine ("","Enter your password:", "")
;assuming the resident guru's pw is already in WIN.INI:
RealPW = IniRead ("Our Company", "Tech Guru PW", "")
if PW==RealPW

MenuChange("SystemUtilitiesCleanupDir", @ENABLE)
MenuChange("SystemUtilitiesEditBatFiles",@ENABLE)
MenuChange("SystemUtilitiesEditWinIni", @ENABLE)
Message ("Access", "You have FULL access")

else
MenuChange("SystemUtilitiesCleanupDir", @DISABLE)
MenuChange("SystemUtilitiesEditBatFiles",@DISABLE)
MenuChange("SystemUtilitiesEditWinIni", @DISABLE)
Message ("Access", "You have LIMITED access")

endif

&System Utilities ;name = "SystemUtilities"
 &Cleanup Dir ;name = "SystemUtilitiesCleanupDir"

...
 &Edit BAT Files...;name = "SystemUtilitiesEditBatFiles"

...
 &Edit WIN.INI ;name = "SystemUtilitiesEditWinIni"

...

WIL Language Elements
WIL statements are consturcted from constants, variables, operators, functions, commands, and
comments.

Each line in a WIL program can be up to 255 Characters long.

See Also:
Floating Point Constants

Integer Constants

String Constants

Predefined Constants

Contributors to the WIL Language
The software was developed by Morrie Wilson and the gang.

Documentation written by Morrie Wilson, Richard Merit, Jennifer Palonus, Tina Browning and Jim Stiles.

Help file construction by Jim Stiles and Tina Browning.

Creating WIL Scripts Files

WIL is a script file interpreter. Before you can do anything useful with the WIL interpreter, you must
have at least one WILscript file to interpret.

Your program installation puts several sample scripts into your directory. Suitable icons for these scripts
were added to the group in the Windows Program Manager, or to the usual place programs are accessed
in your version of Windows.
WIL script files must be formatted as plain text files. You can create them with WinEdit (Wilson
WindowWares optional text editor for programmers), the Windows Notepad or another text editor.
Word processors like WordPerfect, AmiPro, and Word can also save scripts in plain text formatted files.
The .WBT (WinBatch) extension is used in this manual for batch file extensions, but, you can use others
just as well. If you want to click on a batch file and have Windows run it, be sure that you associate it in
Windows with your executable program file. When you installed your program, an association was
automatically established between the interpreter and .WBT files.
Each line in a script file contains a statement written in WIL, Wilson WindowWares Windows Interface
Language.
A statement can be a maximum of 255 characters long (refer to the WIL Reference Manual for
information on the commands).    Indentation does not matter. A statement can contain functions,
commands, and comments.
You can give each script file a name which has an extension of WBT (e.g. TEST.WBT). We'll use the
terms WinBatch script files and WBT files interchangeably.

Running WIL Utilities

WIL system utilities are very versatile. They can be run from icons in the Windows Program Manager.

· as automatic execution macros for Windows via the Run= line in the Windows Win.ini file.
· from macros in word processors and spreadsheets.
· from a command line entry such as the File Run... in the Windows Program and

File Managers.
· by double clicking or dragging and dropping file names in the Windows File

Manager.
· from menu items on the Windows control menu using WinMacro, an accessory

program included with WinBatch.
· from other WIL scripts to serve as single or multiple agents, event handlers,

or schedulers.
· from any Windows application or application macro language that can execute

another Windows program. Software suite macro languages and
application builders like Visual Basic and PowerBuilder are examples of
these.

Running WIL System Utilities

WIL utilities run like any other Windows programs. They can run from a command line, an icon in a shell
program like the Program Manager in Windows 3.1 and Windows NT, or from a file listing such as the Windows
and Windows NT File Managers.

WIL utilities are usually run as files with the extension .WBT. When some WIL utilities are used, they need
information passed to them when they run.    This is easily done by passing command line parameters to them.

This capability can be used from the command line in the File Run menu items of    both the Windows File
Manager and the Program Manager. An example dialog is shown below.

Parameters can be also be passed through the command line entry included in the item properties of any icon in
Program Manager. Finally, an application can send parameters to a WIL utility it launches from a command line or
from a function in a macro language.

A command like this runs a WinBatch system utility from a command line or an icon:
WinBatchfilename filename.wbt param1 param2 ... param9

This command line can be entered into a Command Line text entry box like this one from Program Manager:

The command line is longer than the dialog can show, but it can be easily edited with the arrow keys.
WINBATCHFILENAME is the generic name of your WinBatch executable. The specific, or actual, name for
the WinBatch application will change to reflect the operating system in use: Windows 3.1, Windows 95, and the
different Windows NT versions.
"filename.wbt" is any valid WBT file, and is a required parameter.
"p1 p2 ... p9" are optional parameters (there are a maximum of nine of these) to be passed to the WBT file on
startup. Each is delimited from the next by one space character.

What is a WIL Program?
Use the "Browse" buttons on the main WIL help menu to step through the sections in this tutorial.

A WIL program, like a DOS batch file, is simply a list of commands for the computer to process.    Any task
which will be run more than once, or which requires entering multiple commands or even a single
complex command, is a good candidate for automation as a WIL program.    For example, suppose you
regularly enter the following commands to start Windows:

First:
cd \windows

then:
win

and then:
cd \

Here, you are changing to the Windows directory, running Windows, and then returning to the root
directory.    Instead of having to type these three commands every time you run Windows, you can create
a DOS batch file, called WI.BAT, which contains those exact same commands:

cd \windows
win
cd \

Now, to start Windows, you merely need to type the single command WI, which runs the WI.BAT batch
file, which executes your three commands.

WIL programs work basically the same way.

Our First WIL Program
Our first WIL program will simply run our favorite Windows application: Solitaire.    If you are using a menu
script-based implementation of the WIL Interpreter, refer to the preceding section on Menu Files (see
Menu Hotkeys) for instructions on how to create and edit WIL menu items.    If you are using a batch file-
based implementation of the WIL Interpreter, you will be creating your batch files using an editor, such as
Notepad, that is capable of saving text in pure ASCII format.    In either case, let's create a WIL program
containing the following line of text:

Run("sol.exe", "")
Save the program, and run it (refer to your product documentation, the User's Guide,    for information on
how to execute a WIL program).    Presto!    It's Solitaire.

Functions and Parameters
Now, let's look more closely at the line we entered:

Run("sol.exe", "")

The first part, Run, is a WIL function.    As you might have guessed, its purpose is to run a Windows
program.    There are a large number of functions and commands in WIL, and each has a certain syntax
which must be used.    The correct syntax for all WIL functions may be found in the WIL Function
Reference. (Introduction)    The entry for Run starts off as follows:

Syntax:
Run (program-name, parameters)

Parameters:
(s) program-name = the name of the desired .EXE, .COM, .PIF, .BAT file, or a data

file.
(s) parameters = optional parameters as required by the application.

Like all WIL functions, Run is followed by a number of parameters, enclosed in parentheses.   
Parameters are simply additional pieces of information which are provided when a particular function is
used; they may be either required or optional.    Optional parameters are indicated by being enclosed in
square brackets.    In this case, Run has two required parameters: the name of the program to run, and
the arguments to be passed to the program.

WIL functions use several types of parameters.    Multiple parameters are separated by commas.    In the
example

Run("sol.exe", "")

"sol.exe" and "" are both string constants.    String constants can be identified by the quote marks
which delimit (surround) them.    You may use either double ("), single forward (') or single back (`) quote
marks as string delimiters; the examples in this manual will use double quotes.

Note:    In our shorthand method for indicating syntax the (s) in front of a parameter indicates that it is a
string parameter.

You may have noticed how we said earlier that the two parameters for the Run function are required, and
yet the entry for Run in the WIL Function Reference describes the second parameter     "parameters"    
as being optional.    Which is correct?    Well, from a WIL language standpoint, the second parameter is
required.    That is, if you omit it, you will get a syntax error, and your WIL program will not run properly.   
However, the program that you are running may not need any parameters.    Solitaire, for example, does
not take any parameters.    The way we handle this in our programs is to specify a null string     two
quote marks with nothing in between     as the second parameter, as we have done in our example
above.

To illustrate this further, let's create a WIL program containing the following line:

Run("notepad.exe", "")

This is just like our previous file, with only the name of the program having been changed.    Save the file,
and run it.    You should now be in Notepad.    Now, edit the WIL program as follows:

Run("notepad.exe", "c:\autoexec.bat")

Save the program, exit Notepad, and run the WIL program again.    You should now be in Notepad, with
AUTOEXEC.BAT loaded.    As we've just demonstrated, Notepad is an example of a program which can
be run with or without a file name parameter passed to it by WIL.

It can often be helpful to add descriptive text to your WIL programs:

; This is an example of the Run function in WIL
Run("notepad.exe", "c:\autoexec.bat")

The semicolon at the beginning of the first line signifies a comment, and causes that line to be ignored.   
You can place comment lines, and/or blank lines anywhere in your WIL programs.    In addition, you can
place a comment on the same line as a WIL statement by preceding the comment with a semicolon.    For
example:

Run("sol.exe", "") ; this is a very useful function

Everything to the right of a semicolon is ignored.    However, if a semicolon appears in a string delimited
by quotes, it is treated as part of the string.

Displaying Text
Now, let's modify our original WIL program as follows:

; solitare.program
Display(5, "Good Luck!", "Remember ... it's only a game.")
Run("sol.exe", "")

And run it.    Notice the little dialog box which pops up on the screen with words of encouragement:

That's done by the Display function in the second line above.    Here's the reference for Display:

Syntax:
Display (seconds, title, text)

Parameters:
(i) seconds = seconds to display the message (1-3600).
(s) title = Title of the window to be displayed.
(s) text = Text of the window to be displayed.

Note: The Display function has three parameters.    The first parameter     in our example, 5     is the
number of seconds which the display box will remain on the screen (you can make the box disappear
before then by pressing any key or mouse button).    This is a numeric constant, and     unlike string
constants     it does not need to be enclosed in quotes (although it can be, if you wish, as WIL will
automatically try to convert string variables to numeric variables when necessary, and vice versa).    The
second parameter is the title of the message box, and the third parameter is the actual text displayed in
the box.

Note:    In our shorthand method for indicating syntax the (s) in front of a parameter indicates that it is a
string.    An (i) indicates that it is an integer and a (f) indicates a floating point number parameter.

Now, exit Solitaire (if you haven't done so already), and edit the WIL program by placing a semicolon at
the beginning of the line with the Run function.    This is a handy way to disable, or "comment out," lines in
your WIL programs when you want to modify and test only certain segments.    Your WIL program should
look like this:

; solitare.program
Display(5, "Good Luck!", "Remember ... it's only a game.")
; Run("sol.exe", "")

Now, experiment with modifying the parameters in the Display function.    Try adjusting the value of the
first parameter.    If you look up Display in the WIL reference section, you will see that the acceptable
values for this parameter are 13600.    If you use a value outside this range, WIL will adjust it to "make it
fit"; that is, it will treat numbers less than 1 as if they were 1, and numbers greater than 3600 as 3600.   
Also, try using a non-integer value, such as 2.9, and see what happens (it will be converted to an integer).
Play around with the text in the two string parameters; try making one, or both, null strings ("").

Getting Input
Now, let's look at ways of getting input from a user and making decisions based on that input.    The most
basic form of input is a simple Yes/No response, and, indeed, there is a WIL function called AskYesNo:

Syntax:
AskYesNo (title, question)

Parameters
(s) title = title of the question box.
(s) question = question to be put to the user.

Returns:
(i) @YES or @NO, depending on the button pressed.

You should be familiar with the standard syntax format by now; it shows us that AskYesNo has two
required parameters.    The Parameters section tells us that these parameters both take strings, and tells
us what each of the parameters means.

You will notice that there is also a new section here, called Returns.    This section shows you the
possible values that may be returned by this function.    All functions return values.    We weren't
concerned with the values returned by the Run and Display functions.    But with AskYesNo, the returned
value is very important, because we will need that information to decide how to proceed.    We see that
AskYesNo returns an integer value.    An integer is a whole (non-fractional) number, such as 0, 1, or 2
(the number 1.5 is not an integer, it is a floating point number).    We also see that the integer value
returned by AskYesNo is either @YES or @NO.    @YES and @NO are predefined constants in WIL.   
All predefined constants begin with an @ symbol.    You will find a list of all predefined constants in
Appendix A.    Even though the words Yes and No are strings, it is important to remember that the
predefined constants @YES and @NO are not string variables.    (Actually, @YES is equal to 1, and
@NO is equal to 0.    Don't worry if this is confusing; you really don't need to remember or even
understand it.)

Now, let's modify our WIL program as follows:

AskYesNo("Really?", "Play Solitaire now?")
Run("sol.exe", "")

and run it.    You should have gotten a nice dialog box which asked if you wanted to play Solitaire:

but no matter what you answered, it started Solitaire anyway.    This is not very useful.    We need a way to
use the Yes/No response to determine further processing.    First, we need to explore the concept and use
of variables.

Using Variables
A variable is simply a placeholder for a value.    The value that the variable stands for can be either a text
string (string variable) or a number (numeric variable).    You may remember from Algebra 101 that if
X=3, then X+X=6.    X is simply a numeric variable, which stands here for the number 3.    If we change the
value of X to 4 (X=4), then the expression X+X is now equal to 8.

Okay.    We know that the AskYesNo function returns a value of either @YES or @NO.    What we need to
do is create a variable to store the value that AskYesNo returns, so that we can use it later on in our WIL
program.    First, we need to give this variable a name.    In WIL, variable names must begin with a letter,
may contain any combination of letters or numbers, and may be from 1 to 30 characters long.    So, let's
use a variable called response.    (We will distinguish variable names in this text by printing them in all
lowercase letters; we will print function and command names starting with a capital letter.    However, in
WIL, the case is not significant, so you can use all lowercase, or all uppercase, or whatever combination
you prefer.)    We assign the value returned by AskYesNo to the variable response, as follows:
response = AskYesNo("Really?", "Play Solitaire now?")

Notice the syntax.    The way that WIL processes this line is to first evaluate the result of the AskYesNo
function.    The function returns a value of either @YES or @NO.    Then, WIL assigns this returned value
to response.    Therefore, response is now equal to either @YES or @NO, depending on what the user
enters.

Now, we need a way to make a decision based upon this variable.

Making Decisions
WIL provides a way to conditionally execute a statement, and that is by using the If ... Endif command.   
Actually, there are several forms of the If statement -- the structured form and the single statement form.

Structured Forms
If expression

series of statements
Endif

If expression
series of statements

Else
series of statements

Endif

Single Statement Forms
If expression Then statement.

If expression Then statement
Else statement

 (We refer to If ... Endif as a command, rather than a function, because functions are followed by
parameters in parentheses, while commands are not.    Commands tend to be used to control the WIL
interpreter.)

The use of If ... Endif can easily be illustrated by going back to our WIL program and making these
modifications:
response = AskYesNo("Really?", "Play Solitaire now?")
If response == @YES

Run("sol.exe", "")
Endif

However, as this example is a single statement, rather than a series of statements, the single statement
structure is more appropriate.    There are generally many different ways to perform any task in WIL.   
With experience you will be able quickly decide the best way to do any task.
response = AskYesNo("Really?", "Play Solitaire now?")
If response == @YES Then Run("sol.exe", "")

In this example, we are using If ... Then to test whether the value of the variable response is @YES.    If
it is @YES, we start Solitaire.    If it isn't @YES, we don't.    The rule is: if the condition following the If
keyword is true or works out to a non-zero value, then the statement(s) following    are performed.    If the
condition following the If    keyword is false or works out to a zero value, then the statement(s) following
are ignored.

There is something extremely important that you should note about the syntax of these If ... Endif
commands: the double equal signs (==).    In WIL, a single equal sign (=) is an assignment operator     it
assigns the value on the right of the equal sign to the variable on the left of the equal sign.    As in:

response = AskYesNo("Really?", "Play Solitaire now?")

This is saying, in English: "Assign the value returned by the AskYesNo function to the variable named
response."    But in the statement:
If response == @YES Then Run("sol.exe", "")

we do not want to assign a new value to response, we merely want to test whether it is equal to @YES.   
Therefore, we use the double equal signs (==), which is the equality operator in WIL.    The statement
above is saying, in English: "If the value of the variable named response is equal to @YES, then run the
program SOL.EXE."    If you used a single equal sign (=) here by mistake, you would get an error
message:

Which is WIL's way of telling you to re-check your syntax.
If you've become confused, just remember that a single equal sign (=) is an assignment operator, used to
assign a value to a variable.    Double equal signs (==) are an equality operator, used to test whether the
values on both sides of the operator are the same.    If you have a problem with one of your WIL
programs, make sure to check whether you've used one of these symbols incorrectly.    It's a very
common mistake, which is why we emphasize it so strongly!

We've seen what happens when the statement(s) following the If condition are true.    But what happens
when the condition is false?    Remember we said that when the If condition is false, the following
statement(s) are ignored.    There will be times, however when we want to perform an alternate action in
this circumstance.    For example, suppose we want to display a message if the user decides that he or
she doesn't want to play Solitaire.    We could write:
response = AskYesNo("Really?", "Play Solitaire now?")
If response == @YES

Run("sol.exe", "")
Else

Display(5, "", "Game canceled")
Endif

Using the single statement If...Then...Else structure the same code would look like:

response = AskYesNo("Really?", "Play Solitaire now?")
If response == @YES Then Run("sol.exe", "")

Else Display(5, "", "Game canceled")

When you have only single statements to execute when conditions are true or false, the single statement
form may be preferred.    However, what would happen if you had several functions you wanted to perform

if the user answered Yes?    You would end up with something unwieldy:
response = AskYesNo("Really?", "Play Solitaire now?")
If response == @YES Then Display(5, "", "On your mark ...")
If response == @YES Then Display(5, "", "Get set ...")
If response == @YES Then Display(5, "", "Go!")
If response == @YES Then Run("sol.exe", "")
If response == @NO Then Display(5, "", "Game canceled")

Clearly, the best way of handling this is to use the If... Else... Endif structured form.
response = AskYesNo("Really?", "Play Solitaire now?")
If response == @YES

Display(5, "", "On your mark ...")
Display(5, "", "Get set ...")
Display(5, "", "Go!")
Run("sol.exe", "")

Else
 Display(5, "", "Game canceled")

Endif

Control of Program Flow
The linear flow of statements (executing one statement after another) is not always preferred or possible. 
WIL provides the standard set of flow control commands:    For, While, Switch and GoSub.    These
commands give you the ability to redirect the flow of control in your WIL programs.

The For command controls the looping of a block of code based on an incrementing index.    The While
command conditionally and/or repeatedly executes a series of statements.    The Switch statement allows
selection among multiple blocks of statements.    GoSub transfers control to another point in the WIL
program and saves the location for a Return statement.

Lets explore the use of these commands further.    Perhaps you need to break your Solitaire habit by
limiting your time of play (it has, by now, become obvious to your boss and co-workers that, ever since
you got this program, all you do is play solitaire).    First you need to ask yourself how long you would like
to play by adding the following line to the top of your script.
mins = AskLine("Solitaire", "How many mins do you want to play?", "")

This will display a message box which prompts you for the number of minutes you would like to play.   
Once you enter the desired number of minutes, you could display an additional message as a response to
the specific amount of time entered.    Switch, as you remember, allows selection from among multiple
blocks of statements. Each block of statements is called a case.    In the sample below, there are several
case statement blocks.    Selection of one of the cases is determined by the number of minutes stored in
the variable mins .    If the number is 3, then case 3 will be executed.    All numbers not accounted for will
be executed by the default case, mins.

mins = AskLine("Solitaire", "How many mins do you want to play?", "")
mins = Int(mins)
Switch mins
 case 0

Display(5, "", "Game canceled")
exit
break

 case 1
Message("Only a minute?", "Wow! You've got willpower.")
break

 case 2
Message("2 Minutes?", "This isn't much of a break.")
break

 case 3
Message("3 Minutes?", "You're barely got time to shuffle")
break

 case 4
Message("HA,HA,HA", "I dare you to try to beat me.")
break

 case mins ;default case - must be last in the switch
Message("THAT LONG!!!", "Where did you get all that time?")
break

EndSwitch

Run("sol.exe", "")

In our example, each case statement block is composed of three parts; a case statement followed by a
number, a series of one or more statements and the break command.    If the number behind the case
statement matches the number behind the switch statement, then the case block is executed.    Once the
correct message has been displayed, break terminates the case block and transfers control to the

EndSwitch statement.

Now we need to create a timer to track the time elapsed and compare it to the time entered.    The While
command, which repeats execution of a series of statements by telling WIL, "Do the following while a
condition is present," does this job nicely.    First lets set up a couple of variables.
goal = mins * 60
timer = 0

Now for the While statement.    The first line sets the condition, "While the timer is less than the goal
execute this series of statements."
While timer < goal

remain = goal - timer
WinTitle("Solitaire", "Solitaire (%remain% seconds left)")
Delay(10)
timer = timer + 10

EndWhile

The rest of our series of statements include: a computation of the time remaining (remain) to be
displayed,    a line to display the time remaining in the Solitaire window title bar, a delay statement to allow
time to pass, and a statement to calculate the time elapsed.    EndWhile marks the end of statements.   
WIL marches through the While loop until the variable timer exceeds the value of the variable goal.
So what happens if suddenly your time is up and youre four moves away from winning?    Cant have that
happening.    We can give ourselves the opportunity to add more time by adding another Askline
statement.
mins=AskLine("More Time?", "Enter additional minutes.", 0)

If a time is entered the timer will need to be used again.    Of course, it would be easy to copy that portion
of the script and insert it after the new line.    However, the same script can be utilized with the assistance
of GoSub.

GoSub causes the flow of control to go to another point in the WIL program while remembering its point
of origin.    The name GoSub is an abbreviation of "Go To Subroutine".    You must specify where you want
the flow of control to be transferred -- the subroutine name, and you must mark this point with a label.    A
label is simply a destination address, or marker.    The form of the GoSub command is:

GoSub label

where label is an identifier that you specify.    The same rules apply to label names as to variable names
(the first character must be a letter, the label name may consist of any combination of letters and
numbers, and the label name may be from 1 to 30 characters long).    In addition, the label is preceded by
a colon (:) at the point where it is being used as a destination address.

In our sample script, we move the timing loop to the bottom of the script, add a label marked :dumdedum
above the timing script as the destination address.    After EndWhile, add the statement, Return to allow
the flow of control to return from the bottom of the GoSub.

Well add a GoSub statement in after the Run statement. The GoSub statement is saying, in English "go
to the line marked :dumdedum, and continue processing from there, but remember where you came
from."    When Return is reached, control will be transferred back to the statement after the original
GoSub.

Notice that the label dumdedum is preceded by a colon as the address, but not on the line where it
follows the GoSub keyword.    This is important.    Although you can have multiple lines in your WIL
program which say GoSub dumdedum, you can have only one line marked :dumdedum (just like you
can have several people going to your house, but can have only one house with a particular address).   
Of course, you can use many different labels in a WIL program, just as you can use many different

variables, as long as each has a unique name.   

In addition to changing the message displayed in the "mins=AskLine" statement, a default time has been
added.    The value returned will need to be checked.    In the example below, "!" signifies "not equal to".   
Therefore the line reads, "If mins is not equal to zero then GoSub dumdedum."
If mins!=0 then GoSub dumdedum

If a time is returned, GoSub will send execution to the :dumdedum label and the waiting process will
begin again.    After the time has elapsed, control will be returned to the statement following the GoSub.
Run("sol.exe", "")

GoSub dumdedum

mins=AskLine("More Time?", "Enter additional minutes", 0)
If mins!=0 then GoSub dumdedum

WinClose("Solitaire")
Message("Time's Up", "Get Back to Work!")

Exit

:dumdedum
goal = mins * 60
timer = 0
While timer < goal

remain = goal - timer
WinTitle("Solitaire", "Solitaire (%remain% seconds left)")
Delay(10)
timer = timer + 10

EndWhile
Return

The last thing we want to do is end the program with the WinClose function and display a final message.

The Exit command is used to keep the processing from "falling through" to the subroutine at the end of
the program.    In this case, the dumdedum subroutine sits at the end.    Exit causes a WIL program to end
immediately and not fall into the dumdedum loop.

The sample script could be considered complete at this point.    However, the For command has yet to be
discussed.    The For command is more complex than the previous commands.    It controls the looping of
a block of code based on an incrementing index.    This command is handy if you want to perform a
specific code block a particular number of times.    The statement says, "Repeat the block of code for each
value of a variable from the initial value to the final value, incrementing the variable after each pass of the
loop"   

In the sample below, the size of the Solitaire window is manipulated and displayed 10 times before the
window is zoomed to full screen. Each time the loop is executed, the coordinate and size variables (j and
k)    are altered, and then used in a WinPlace statement (it's time to start looking up functions in the
reference yourself now) to affect the position and size of the Solitaire window.

Run("sol.exe","")

for i = 0 to 9
j=100-i*10
k=300+i*70
WinPlace(j,j,k,k, "Solitaire")

next

WinZoom("Solitaire")

This concludes the first part of our tutorial.    You now have the building blocks you need to create useful
WIL programs.    In the second part, which follows, we will look in more detail at some of the WIL functions
which are available for your use.

Exploring WIL
If you take a moment and flip through the WIL Function Reference that takes up most of the back of this
manual, you will notice that WIL uses a very convenient naming convention.    WIL functions are named so
that the object affected by the function is the first word in the function name -- any function dealing with
Files starts with the word "File", and they can be found clumped together in the alphabetically arranged
function reference.    If you think you might want a function dealing with DDE, simply flip open the manual
to the DDE section and scan the available functions.

What follows is just quick overview of the many functions and commands available in WIL.    These should
be sufficient to begin creating versatile and powerful WIL programs.    For complete information on these
and all WIL functions and commands, refer to the WIL Function Reference (see Introduction).

Running Programs
There are several functions that you can use to start an application, most of which share a common
syntax.    To name a few:

Run (program-name, parameters)
We've already seen the Run function.    This function starts a program in a "normal" window.   
Windows, or the application itself, decides where to place the application's window on the screen.

Example:
Run("notepad.exe", "myfile.txt")

If the program has an EXE extension, its extension may be omitted:
Run("notepad", "myfile.txt")

Also, you can "run" data files if they have an extension in WIN.INI which is associated with an
executable program.    So, if TXT files are associated with Notepad:

Run("myfile.txt", "")
would start Notepad, using the file MYFILE.TXT.

When you specify a file to run, WIL looks first in the current directory, and then in the directories
on your system path.    If the file is not found, WIL will return an error.    You can also specify a full
path name for WIL to use, as in:

Run("c:\windows\apps\winedit.exe", "")

RunZoom (program-name, parameters)
RunZoom is like Run, but starts a program as a full-screen window.

Example:
RunZoom("excel", "bigsheet.xls")

RunIcon (program-name, parameters)
RunIcon starts a program as an icon at the bottom of the screen.

Example:
RunIcon("clock", "")

All these Run functions simply launch the program and continue with WIL processing.    If you
need to wait until the program exits before continuing, then there are a number of other suitable
functions also available.

RunWait (program-name, parameters)
RunWait starts a program and waits for it to exit before continuing.

RunZoomWait (program-name, parameters)
RunZoomWait starts a program as a full screen window and waits for it to exit before continuing.

RunIconWait (program-name, parameters)
RunIconWait starts a program as an icon at the bottom of the screen and waits for it to exit
before continuing.

If all these Run functions are too much for you, there is also the combination RunShell function,
which combines all the capabilities of the Run functions and adds additional capability.

RunShell (program-name, parameters, working dir, view, waitflag)
RunShell is an advanced form of the Run function that even allows the specification of a working
directory, along with the window view mode and whether or not to wait for completion of the run
program in a single function.

Display and Input
Here we have functions which display information to the user and prompt the user for information, plus a
couple of relevant system functions.

Display (seconds, title, text)
Displays a message to the user for a specified period of time.    The message will disappear after the time
expires, or after any keypress or mouse click.

Example:
Display(2, "Please wait", "Loading Solitaire now")

Message (title, text)
This command displays a message box with a title and text you specify, which will remain on the screen
until the user presses the OK button.

Example:
Message("Sorry", "That file cannot be found")

Pause (title, text)
This command is similar to Message, except an exclamation-point icon appears in the message box, and
the user can press OK or Cancel.    If the user presses Cancel, the WIL program ends (or goes to the
label :cancel, if one is defined).

Example:
Pause("Delete Backups", "Last chance to stop!")
; if we got this far, the user pressed OK
FileDelete("*.bak")

AskYesNo (title, question)
Displays a dialog box with a given title, which presents the user with three buttons: Yes, No, and
Cancel.    If the user presses Cancel, the WIL program ends (or goes to the label :cancel, if one is
defined).    Otherwise, the function returns a value of @YES or @NO.

Example:
response = AskYesNo("End Session", "Really quit Windows?")

AskLine (title, prompt, default)
Displays a dialog box with a given title, which prompts the user for a line of input.    Returns the default if
the user just presses the OK button.

Example:
yourfile = AskLine("Edit File", "Filename:", "newfile.txt")
Run("notepad", yourfile)

If you specify a default value (as we have with NEWFILE.TXT), it will appear in the response box, and
will be replaced with whatever the user types.    If the user doesn't type anything, the default is used.

Beep
Beeps once.
Beep

And if one beep isn't enough for you:
Beep
Beep
Beep

TimeDelay (seconds)
Pauses WIL program execution.

The TimeDelay function lets you suspend processing for a fixed period of time, which can be anywhere
from 1 to 3600 seconds.

Manipulating Windows
There are a large number of functions which allow you to manage the windows on your desktop.    Here
are some of them:

WinZoom (partial-windowname)
Maximizes an application window to full-screen.

WinIconize (partial-windowname)
Turns an application window into an icon.

WinShow (partial-windowname)
Shows a window in its "normal" state.

These three functions are used to modify the size of an already-running window.    WinZoom is the
equivalent of selecting Maximize from a window's control menu, WinIconize is like selecting Minimize,
and WinShow is like selecting Restore.

The window on which you are performing any of these functions does not have to be the active window.   
If the specified window is in the background, and a WinZoom or WinShow function causes the size of
the window to change, then the window will be brought to the foreground.    The WinZoom function has
no effect on a window which is already maximized; likewise, WinShow has no effect on a window which
is already "normal."

Each of these functions accepts a partial windowname as a parameter.    The windowname is the name
which appears in the title bar at the top of the window.    You can specify the full name if you wish, but it
may often be advantageous not to have to do so.    For example, if you are editing the file
SOLITARE.WBT in a Notepad window, the windowname will be Notepad - SOLITARE.WBT.

You probably don't want to have to hard-code this entire name into your WIL program as:
WinZoom("Notepad - SOLITARE.WBT")

Instead, you can specify the partial windowname "Notepad":
WinZoom("Notepad")

If you have more than one Notepad window open, WIL will use the one which was most recently used or
started.

Note that WIL matches the partial windowname beginning with the first character, so that while
WinZoom("Note")

would be correct,
WinZoom("pad")

would not result in a match.

Also, the case (upper or lower) of the title is significant, so
WinZoom("notepad")

would not work either.

WinActivate (partial-windowname)
Makes an application window the active window.

This function makes a currently-open window the active window.    If the specified window is an icon, it will
be restored to normal size; otherwise, its size will not be changed.

WinClose (partial-windowname)
Closes an application window.

This is like selecting Close from an application's control menu.    You will still receive any closing
message(s) that the application would normally give you, such as an "unsaved-file" dialog box.

WinExist (partial-windowname)
Tells if a window exists.

This function returns @TRUE or @FALSE, depending on whether a matching window can be found.   
This provides a way of insuring that only one copy of a given window will be open at a time.

If you've been following this tutorial faithfully from the beginning, you probably have several copies of
Solitaire running at the moment.    (You can check by pressing Ctrl-Esc and bringing up the Task
Manager.    You say you've got five Solitaire windows open?    Okay, close them all.)    Now, let's modify our
WIL program.    First, trim out the excess lines so that it looks like this:
Run("sol.exe", "")

Now, let's use the WinExist function to make sure that the WIL program only starts Solitaire if it isn't
already running:
If WinExist("Solitaire") == @FALSE Then Run("sol.exe", "")

And this should work fine.    Run the WIL program twice now, and see what happens.    The first time you
run it, it should start Solitaire; the second (and subsequent) time, it should not do anything.

However, it's quite likely that you want the WIL program to do something if Solitaire is already running    
namely, bring the Solitaire window to the foreground.    This can be accomplished by using the
WinActivate function as follows:
If WinExist("Solitaire") == @TRUE

WinActivate("Solitaire")
Else

Run("sol.exe", "")
Endif

Note that we can change this to have WinExist check for a False value instead, by modifying the
structure of the WIL program:
If WinExist("Solitaire") == @FALSE

Run("sol.exe", "")
Else

WinActivate("Solitaire")
Endif

Either format is perfectly correct, and the choice of which to use is merely a matter of personal style.    The
result is exactly the same.

EndSession ()
Ends the current Windows session.

This does exactly what it says.    It will not ask any questions (although you will receive any closing
messages that your currently-open windows would normally display), so you may want to build in a little
safety net:
sure = AskYesNo("End Session", "Really quit Windows?")
If sure == @YES Then EndSession()

EndSession is an example of a WIL function which does not take any parameters, as indicated by the
empty parentheses which follow it.    The parentheses are still required, though.

Files and Directories
DirChange (pathname)
Changes the directory to the pathname specified.

Use this function when you want to run a program which must be started from its own
directory.    "Pathname" may optionally include a drive letter.
Example:
DirChange("c:\windows\winword")
Run("winword.exe", "")

DirGet ()
Gets the current working directory.

This function is especially useful in conjunction with DirChange, to save and then return to the current
directory.

Example:
origdir = DirGet()
DirChange("c:\windows\winword")
Run("winword.exe", "")
DirChange(origdir)

FileExist (filename)
Determines if a file exists.

This function will return @TRUE if the specified file exists, and @FALSE if it doesn't exist.

Example:
If FileExist("win.bak") == @FALSE

FileCopy("win.ini", "win.bak", @FALSE)
endif
Run("notepad.exe", "win.ini")

FileCopy (from-list, to-file, warning)
Copies files.

If warning is @TRUE, WIL will pop up a dialog box warning you if you are about to overwrite an existing
file, and giving you an opportunity to change your mind, along with selecting various options for copying
the files.    If warning is @FALSE, it will overwrite existing files with no warning.

Example:
FileCopy("win.ini", "*.sav", @TRUE)
Run("notepad.exe", "win.ini")

The asterisk (*) is a wildcard character, which matches any letter or group of letters in a file name.    In
this case, it will cause WIN.INI to be copied as WIN.SAV.

FileDelete (file-list)
Deletes files.

Example:

If FileExist("win.bak") == @TRUE Then FileDelete("win.bak")

FileRename (from-list, to-file)
Renames files to another set of names.

We can illustrate the use of these WIL program functions with a typical WIL application.    Let's suppose
that our word processor saves a backup copy of each document, with a BAK extension, but we want a
larger safety net when editing important files.    We want to keep the five most recent versions of the
wonderful software manual we're writing.    Here's a WIL program to accomplish this:
If FileExist("wil.bak") == @TRUE

FileDelete("wil.bk5")
FileRename("wil.bk4", "wil.bk5)
FileRename("wil.bk3", "wil.bk4)
FileRename("wil.bk2", "wil.bk3)
FileRename("wil.bk1", "wil.bk2)
FileRename("wil.bak", "wil.bk1)

Endif
Run("winword.exe", "wil.doc")
Exit

If the file WIL.BAK exists, it means that we have made a change to WIL.DOC.    So, before we start
editing, we delete the oldest backup copy, and perform several FileRename functions, until eventually
WIL.BAK becomes WIL.BK1.

However, this still isn't quite right.    What would happen if the file WIL.BK5 didn't exist?    In the DOS batch
language, we would get an error message, and processing would continue.    But in WIL, the error would
cause the WIL program to terminate resulting in a message resembling the following:

There are two ways that we can handle this.    We could use an If FileExist test before every file
operation, and test the returned value for a @TRUE before proceeding.    But this is clumsy, even with
such a small WIL program, and would become unwieldy with a larger one.

Handling Errors
Luckily, there is a WIL system function to help us here: ErrorMode.    The ErrorMode function lets you
decide what will happen if an error occurs during WIL processing.    Here's the syntax:

ErrorMode (mode)
Specifies how to handle errors.

Parameters:
(i) mode = @CANCEL, @NOTIFY, or @OFF.

Returns:
(i) previous error setting.

Use this command to control the effects of runtime errors.    The default is @CANCEL, meaning the
execution of the WIL program will be canceled for any error.

@CANCEL:    All runtime errors will cause execution to be canceled.    The user will be notified which error
occurred.

@NOTIFY:    All runtime errors will be reported to the user, and they can choose to continue if it isn't fatal.

@OFF:    Minor runtime errors will be suppressed. Moderate and fatal errors will be reported to the user.   
User has the option of continuing if the error is not fatal.

As you can see, the default mode is @CANCEL, and it's a good idea to leave it like this.    However, it is
quite reasonable to change the mode for sections of your WIL program where you anticipate errors
occurring.    This is just what we've done in our modified WIL program:
If FileExist("wil.bak") == @TRUE

ErrorMode(@OFF)
FileDelete("wil.bk5")
FileRename("wil.bk4", "wil.bk5)
FileRename("wil.bk3", "wil.bk4)
FileRename("wil.bk2", "wil.bk3)
FileRename("wil.bk1", "wil.bk2)
FileRename("wil.bak", "wil.bk1)
ErrorMode(@CANCEL)

Endif
Run("winword.exe", "wil.doc")
Exit

Notice how we've used ErrorMode(@OFF) to prevent errors in the If statement section from aborting the
WIL program, and then used ErrorMode(@CANCEL) at the end of the that section to change back to the
default error mode.    This is a good practice to follow.

Note:    Pay close attention when suppressing errors with the ErrorMode function.    When an error
occurs, the processing of the ENTIRE line is canceled.    Setting the ErrorMode() to @OFF or @NOTIFY
allows execution to resume at the next line.    Various parts of the original line may have not been
executed.

e.g.

ErrorMode(@OFF)
; The FileCopy will cause a file not found error,
; canceling the execution of the whole line.
; The variable A is set to @FALSE by default

A = FileCopy("xxxxxxxxx", "*.*", @FALSE)
;
;
; Now there is a NOT symbol in front of the FileCopy.
; Nonetheless, if an error occurs A is still set to @FALSE
; not @TRUE as might be assumed. When an error is suppressed
; with ErrorMode the line is canceled, and any assignment is
; simply set to the default @FALSE value.
;

A = !FileCopy("yyyyyyyyy", "*.*", @FALSE)

For this reason, ErrorMode() must be used with a great deal of care.    The function for which the errors
are being suppressed should be isolated from other functions and operators as much as possible.

e.g.
; INCORRECT USAGE of ErrorMode()
; In this instance, when the copy has an error, the entire if
; statement is canceled.
; Execution begins (erroneously) at the next line, and states
; that the copy succeeded. Next a fatal error occurs as the
; "else" is found, since it does not have a matching if

ErrorMode(@OFF)
if FileCopy(file1,file2,@FALSE) == @TRUE

Message("Info", "Copy worked")
else

Message("Error", "Copy failed")
endif

; CORRECT USAGE
; In this case, the FileCopy is isolated from other statements
; and flow control logic. When the statement fails, execution
; can safely begin at the next line. The variable "a" will
; contain the default value of zero that a failed assignment
; returns.
; Results are not confused by the presence of other operators.
;
ErrorMode(@FF)
a = FileCopy(file1,file2,@FALSE)
ErrorMode(@CANCEL)
if a == @TRUE

Message("Info", "Copy worked")
else

Message("Error", "Copy failed")
endif

Selection Methods
So far, whenever we have needed to use a file name, we've hard-coded it into our WIL programs.    For
example:
Run("notepad.exe", "agenda.txt")

Naturally, there should be a way to get this information from the user "on the fly", so that we wouldn't have
to write hundreds of different WIL programs.    And there is a way.    Three or four ways, actually.   
Consider, first, a function that we have already seen, AskLine:
file = AskLine("", "Enter Filename to edit?", "")
Run("notepad.exe", file)

This will prompt for a filename, and run Notepad on that file:

There are only three problems with this approach.    First, the user might not remember the name of the
file.    Second, the user might enter the name incorrectly.    And finally, modern software is supposed to be
sophisticated and user-friendly enough to handle these things the right way.    And WIL certainly can.

There are several functions we can use for an improved file selection routine.   

FileItemize (file-list)
DirItemize (dir-list)
Nicer File Selection - The Dialog Editor
Nicer Messages - using CRLF's

Running DOS Programs
WIL can run DOS programs, just like it runs Windows programs:
DirChange("c:\game")
Run("scramble.exe", "")

If you want to use an internal DOS command, such as DIR or TYPE, you can do so by running the DOS
command interpreter, COMMAND.COM, with the /c program parameter, as follows:
Run("command.com", "/c type readme.txt")

Everything that you would normally type on the DOS command line goes after the /c in the second
parameter.    Here's another example:
Run("command.com", "/c type readme.txt | more")

These examples assume that COMMAND.COM is in a directory on your DOS path.    If it isn't, you could
specify a full path name for it:
Run("c:\command.com", "/c type readme.txt | more")

Or, better still, you could use the WIL Environment function.

Environment (env-variable)
Gets a DOS environment variable.

Since DOS always stores the full path and filename of the command processor in the DOS environment
variable COMSPEC, it is an easy matter to retrieve this information:
coms = Environment("COMSPEC")

and use it in our WIL program:
coms = Environment("COMSPEC")
Run(coms, "/c type readme.txt")

To get a DOS window, just run COMMAND.COM with no parameters:
coms = Environment("COMSPEC")
Run(coms, "")

Sending Keystrokes to Programs
Here we come to one of the most useful and powerful features of WIL: the ability to send keystrokes to
your programs, just as if you were typing them directly from the keyboard.

SendKeysTo (partial-window-name, character-codes)
Activates the specified window and sends keystrokes to it.

This is an ideal way to make the computer automatically type the keystrokes that you enter every time
you start a certain program.    For example, to start up Notepad and have it prompt you for a file to open,
you would use:
Run("notepad.exe", "")
SendKeysTo("Notepad", "!fo")

The parameters you specify for SendKeysTo are the window-name (or at least the first unique part of it),
and the string that you want sent to the program.    This string consists of standard characters, as well as
some special characters which you will find listed under the entry for SendKey in the WIL Function
Reference (see SendKey).    In the example above, the exclamation mark (!) stands for the Alt key, so !f
is the equivalent of pressing and holding down the Alt key while simultaneously pressing the F key.    The
o in the example above is simply the letter O, and is the same as pressing the O key by itself:

Here's another example:
RunZoom("sol.exe", "")
SendKeysTo("Solitaire", "!gc{RIGHT}{SP}~")

This starts up Solitaire, brings up the Game menu (!g), and selects Deck (c) from that menu:

Then it moves the cursor to the next card back style on the right ({RIGHT}), selects that card back ({SP}),
and then selects OK (~).    (The tilde sign    (~) is SendKey shorthand for the enter key.

And walla!    A different card design every time you play!

Our Completed WIL File

Here is the final working version of the WIL program that we've slowly been building throughout this
tutorial:
; sol.wbt
mins = AskLine("Solitaire", "How many mins do you want to play?", "")
Switch mins
 case 0

Display(5, "", "Game canceled")
exit
break

 case 1
Message("Only a minute?", "Wow! You've got willpower.")
break

 case 2
Message("2 Minutes?", "This isn't much of a break.")
break

 case 3
Message("3 Minutes?", "You're barely got time to shuffle")
break

 case 4
Message("HA,HA,HA", "I dare you to try to beat me.")
break

 case mins ;default case - must be last in the switch
Message("THAT LONG!!!", "Where did you get all that time?")
break

EndSwitch
If WinExist("Solitaire") == @TRUE
 WinActivate("Solitaire")

WinShow("Solitaire")
Else
 Run("sol.exe", "")
Endif

for i = 0 to 9
j=100-i*10
k=300+i*70
WinPlace(j,j,k,k,"Solitaire")

next

WinZoom("Solitaire")

SendKeysTo("Solitaire", "!gc{RIGHT}{SP}~")

GoSub dumdedum

mins=AskLine("More Time?", "Enter additional minutes", 0)
If mins!=0 then GoSub dumdedum

while WinExist("Solitaire")
WinClose("Solitaire") ;Make sure it closes

endwhile
Message("Time's Up", "Get Back to Work!")
Exit

:dumdedum
goal = mins * 60
timer = 0
While timer < goal

remain = goal - timer
if WinExist("Solitaire")
 WinTitle("Solitaire", "Solitaire (%remain% seconds left)")
else
 exit
endif
Delay(10)
timer = timer + 10

EndWhile
Return

It incorporates many of the concepts that we've discussed so far, as well as using some arithmetic (*, -, +)
and relational (<) operators that are covered in the section on Operators.

It can also be improved and customized in a number of ways, but we'll leave that up to you.

If you can understand and follow the structures and processes illustrated in this sample file, and can
begin to incorporate them into your own WIL programs, you are well on your way to becoming a true WIL
guru!

Programming Tips
This section covers some miscellaneous items, of a more advanced nature.

Recovering from Cancel

Terminating WIL processing

Carriage Return Line Feed

Extension Associations and the Run functions

WinExec, LoadModule and ShellExecute

Debug

Internal Control Functions

Partial Window Names

System.ini and its device=    lines

Dividing Floating Point Numbers

Sounds

Recovering from Cancel
If the user presses the Cancel button (in most any dialog which has one), the label :CANCEL will be
searched for in the WIL program, and, if found, control will be transferred there.    If no label :CANCEL is
found, processing simply stops.

This allows the program developer to perform various bits of cleanup processing after a user presses
Cancel.

Terminating WIL processing
A currently-executing WIL program can be terminated immediately by pressing the <CtrlBreak> key
combination.    You may need to hold it a second or two.    IntControl(12,...) can be used to suppress the
ability of the user to terminate the batch file.    One would suggest the batch file is completely debugged
before doing this.

Carriage Return Line Feed
A commonly asked question is, "How do I get my long lines to wrap to the next line?".    One way, besides
using the built in @crlf and @tab string constants is to use the functions Num2Char or StrCat to
accomplish this.

Example:
cr=Num2Char(13) ; 13 is a carriage-return
lf=Num2Char(10) ; 10 is a line feed
Message("", "This is line one %cr% %lf% This is line two")

or...
cr=Num2Char(13)
lf=Num2Char(10)
crlf=StrCat(cr, lf)
Message("", "This is line one %crlf% This is line two")

Note: @crlf and @tab are explained in more detail in the WIL Tutorial section under the heading Nicer
Messages.

Extension Associations and the Run functions
The Run function (and most of the related members of the Run... family of functions) allow you to run a
data file if it is associated with a program via the [Extensions] section of the WIN.INI file.    You can also
(optionally) create a special default program entry in that section, as follows:

*=program.exe

where an asterisk is used instead of a file extension.    Then, if you try to run a data file whose extension is
not specified in [Extensions], WIL will run "program.exe."    Even though the customary ^.ext is not
included in the example line above, WIL will pass the name of the data file as a command-line parameter
to "program.exe."

The RunShell function, on the other hand, being a more modern implementation of the WIL Run
functions, references the Windows registration database to determine data file associations.    It does not
support running programs with unknown extensions.

WinExec, LoadModule and ShellExecute
Windows provides three major ways to launch applications, known as the WinExec, LoadModule, and
ShellExecute Application Program Interfaces (API's).    Most of the Run family of functions use the
WinExec, RunEnviron uses LoadModule, and RunShell uses the ShellExecute API's.

In 32 bit versions of WIL, the CreateProgram function is used instead.

This information is offered as background knowledge, as certain badly behaved applications may prefer to
be launched from one type of API rather than another.    In particular, if an application has a tendency to
crash after being launched by a Run function, try using the RunShell function instead.

Debug
WIL has a handy debug utility which comes with the WIL Interpreter.    When Debug is initialized, a dialog
box which controls the execution of each statement is displayed.    Debug works line by line through the
script, displaying the current statement, its value and the following statement.    The script will also be
executed in conjunction with the display of statements.    Initialize Debug by adding Debug(1) or
Debug(@ON) to a specific point in your script.   

Note:    For specific instructions see Debug in the WIL Function Reference.

Internal Control Functions
WinBatch has several Internal Control functions, IntControl,    which permit numerous internal operations.
If you are having trouble finding a specific command, you may find a solution here.    For example,
IntControl can perform a warm boot, restart windows and control whether a file list box has to return a file
name.    Check out the versatility of    IntControl in the WIL Function Reference.

Partial Window Names
Those WIL functions which take a partial windowname as a parameter can be directed to accept only an
exact match by ending the window name with a tilde (~).

A    tilde (~) used as the first character of the window name will match any window containing the specified
string anywhere in its title.    For example, WinShow("~Notepad") will match a window title of "(Untitled) -
Notepad" and a window title of "My Notepad Application", as well as a window title of "Notepad -
(Untitled)".

A    tilde (~) used as the last character of the window name indicates that the name must match the
window title through to the end of the title.    For example, WinShow("Note~") would only match a
window whose title was "Note"; it would not match "Notepad".    Furthermore, WinShow("~Notepad~")
will match a window title of "Notepad" and a window title of "(Untitled) -Notepad", but will not match a
window title of "Notepad - (Untitled)".

When using partial windownames as parameters, you can specify the full name if you wish, but in most
circumstances, it isn't necessary.    Remember that the case (upper or lower) of the title is significant.    If
the case is not correct, a match will not be made.

System.ini and its device=    lines
The "device=" lines in the System.ini cannot be edited using the normal IniWritePvt function.    See
BinaryPokeStr for a complete example of how to write "device=" lines into the System.ini.

Dividing Floating Point Numbers
This example might not work exactly how you think it will.    If you take two integers for example 32 and 37
and divide 32 by 37, you will not necessarily get a floating point answer.    This integer divide will result in
an answer of 0.    Add 0.0 to one of the numbers to get a true floating point answer.

Example:
;;Problem.wbt
a1= "An unexpected problem can occur when dividing numbers."
a2= "The problem is in deciding between an integer divide "
a3= "(where the remainder, if any, is discarded) and a floating"
a4= " point divide (where a floating point number is returned)."
a5= ""
a6= ""
a7= "Let's assume a test. There are 42 questions."
a8= "A student gets 37 of them correct,"
a9= "what is the student's score."
a10= " "
a11= "iQuestions = 42"
a12= "iCorrect = 37"
a13= "Score = iCorrect / iQuestions"

iQuestions = 42
iCorrect = 37
Score = iCorrect / iQuestions

a14= " "
a15= "The unexpected result is that the score is %Score%"
a16= "Reasonable problem? The trap is that WIL will perform an"

a17= "integer divide and return the unexpected answer of Zero."
a18= " "
a19= "To dig your code out of this trap, simply use floating point"
a20= "numbers when you want a floating point answer."
a21 = " "
a22= "fQuestions = 42.0"
a23= "fCorrect = 37.0"

fQuestions = 42.0
fCorrect = 37.0
Score = fCorrect / fQuestions

a24= "Score = fCorrect / fQuestions"
a25= "The correct score is %Score%"
a26= " "
a27= "Or make the answer look nicer by using the Decimals function"
a28= "and a little formatting."
a29= ""
a30= "Decimals(0)
a31= "Score=Score*100"
Decimals(0)
Score=Score*100
a32= ""
a33= "The correct score is %Score%%%"

text=""
for i=1 to 15
 text=strcat(text,a%i%,@crlf)

next

text2=""
for i=16 to 33
 text2=strcat(text2,a%i%,@crlf)
next

Message("Integer Divide Problem",text)
Message("Floating point solution",text2)

File Delimiters
In order to support long file names in Windows NT and Windows 95, which can contain embedded
spaces, we have changed the default file delimiter, used to delimit lists of files and directories, to a TAB in
the 32-bit version of WIL.    In the 16-bit version of WIL, the default delimiter has not changed, and
remains a space.   

Note that this is the "default" file delimiter.    We have added the ability to change the file delimiter to a
character of your own choosing, using the new IntControl 29.   

The most important functions affected by this change are:

DirItemize

DiskScan

FileItemize

which now return lists delimited by the current file delimiter character.

The following functions, which take file or directory lists as input parameters, now expect the lists to be
delimited by the current file delimiter character.    However, they now also accept lists delimited with a TAB
or a vertical bar ("|", which may be easier to code in a WIL script):

DirItemize FileAttrSet FileMove FileTimeTouch

DirRemove FileCopy FileRename

DiskFree FileDelete FileSize

FileAppend FileItemize FileTimeSet

Note that DiskFree will continue to accept space-delimited lists as input.

Sounds
If you have Windows Multimedia extensions, and hardware capable of playing WAV waveform files, there
will be sounds audible at various points in the execution of WIL programs.    By default, these sounds are
enabled.    If you want sounds to be off by default, enter the line:

Sounds=0

in the [Main] section of the WWWBATCH.INI file.

You can also use the Sounds function to turn sounds on and off from within a WIL program.

If you add to the [Sounds] section of your WIN.INI file a line such as:

StartProgram=CHIMES.WAV,Program Launch

then the WIL Interpreter will make sounds whenever a new program is launched.    One of our developers
is particularly enamored with the "BEAMUP.WAV" file available on various on-line services.   

Floating Point Constants
Floating Point constants are built from the digits 0 through 9, the plus and minus signs, a period . and the
letter E.    They can range in magnitude from negative to positive 1.0E+300 (a *very* large number).   
Constants larger than these permissible magnitudes will produce unpredictable errors.    Floating point
constants must begin with a digit.

Examples of floating point constants.
3.14159
-8.92E-45
0.0001724
8.95e294

Integer Constants
Integer constants are built from the digits 0 through 9.    They can range in magnitude from negative to
positive 231 - 1 (approximately two billion).    Constants larger than these permissible magnitudes will
produce unpredictable results.

Examples of integer constants:
1
-45
377849
-1999999999

String Constants
String constants are comprised of displayable characters bounded by quote marks.    You can use double
quotes ("), single quotes ('), or back quotes (`) to enclose a string constant, as long as the same type of
quote is used to both start and end it.    If you need to embed the delimiting quote mark inside the string
constant, use the delimiting quote mark twice.

Examples of string constants:
"a"
`Betty Boop`
"This constant has an embedded "" mark"
'This constant also has an embedded " mark'

Predefined Constants
The programming language has a number of built-in integer constants that can be used for various
purposes.    These start with the @-sign, and are case-insensitive.

Some predefined constants:
@FALSE
@NO
@STACK
@TILE
@TRUE
@YES

A list of all the predefined constants can be found in Appendix A

Identifiers
Identifiers are the names supplied for variables, functions, and commands in your program.

An identifier is a sequence of one or more letters or digits that begins with a letter.    Identifiers may have
up to 30 characters.

All identifiers are case insensitive.    Upper-case and lower-case characters may be mixed at will inside
variable names, commands or functions.

For example, these statements all mean the same thing:
AskLine(MyTitle, Prompt, Default)
ASKLINE(MYTITLE, PROMPT, DEFAULT)
aSkLiNe(MyTiTlE, pRoMpT, dEfAuLt)

Variables
A variable may contain an integer, a floating point number, a string, a list, or a string representing an
integer or a floating point number .    Automatic conversions between numbers and strings are performed
as a matter of course during execution.

If a function requires a string parameter and a numeric parameter is supplied, the variable will be
automatically modified to include the representative string.

If a function requires a numeric parameter and a string parameter is supplied, an attempt will be made to
convert the string to the required numeric parameter.    If it does not convert successfully, an error will
result.

Lists
A list is a string variable which itself contains one or more strings, each of which is delimited (separated)
by a common character.    For example, the FileItemize function returns a list of file names, delimited by
spaces, and the WinItemize function returns a list of window names, delimited by tabs.    In order to use
functions which accept a list as a parameter, such as AskItemList, you will need to know what character
is being used to delimit the list.

Keywords
Keywords are the predefined identifiers that have special meaning to the programming language.    These
cannot be used as variable names.

WIL keywords consist of the functions, commands, and predefined constants.

Some examples of reserved keywords:
Beep
DirChange
@Yes
FileCopy

Operators
The programming language operators take one operand ("unary operators") or two operands ("binary
operators").

Unary operators (integers and floating point numbers):
Unary operators (integers only):
Binary logical operators (integers only):
Binary arithmetic operators    (integers and floating point numbers):
Binary relational operators:
Assignment operator:

Unary operators (integers and floating point numbers):

- Arithmetic Negation (Two's complement)
+ Identity (Unary plus)

Unary operators (integers only):

~ Bitwise Not.    Changes each 0 bit to 1, and vice-versa.
! Logical Not.    Produces 0 (@FALSE) if the operand is

nonzero, else 1 (@TRUE) if the operand is zero.

Binary logical operators (integers only):

<< Left Shift
>> Right Shift
& Bitwise And
| Bitwise Or
^ Bitwise Exclusive Or    (XOR)
&& Logical And
| | Logical Or

Binary arithmetic operators    (integers and floating point numbers):

** Exponentiation
* Multiplication
/ Division
mod Modulo
+ Addition
- Subtraction

Binary relational operators:

> Greater-than
>= Greater-than or equal
< Less-than
<= Less-than or equal
== Equality
!= or <> Inequality

Assignment operator:

= Assigns evaluated result of an expression to a variable

Precedence and Evaluation Order
The precedence of the operators affect the evaluation of operands in expressions.    Operands associated
with higher-precedence operators are evaluated before the lower-precedence operators.

The table below shows the precedence of the operators.    Where operators have the same precedence,
they are evaluated from left to right.

Operator Description
(     ) Parenthetical grouping
~      !      -      + Unary operators
** Exponentiation
*      /      mod Multiplication & Division
+      - Addition & Subtraction
<<        >> Shift operators
<      <=      ==      >=      >      !=      <> Relational operators
&      ^      | Bit manipulation operators
&&      || Logical operators

Comments
A comment is a sequence of characters that are ignored when processing a command.    A semicolon (not
otherwise part of a string constant) indicates the beginning of a comment.

All characters to the right of the semicolon are considered comments, and are ignored.

Blank lines are also ignored.

Examples of comments:
; This is a comment
abc = 5 ; This is also a comment

Statements
Assignment Statements
Assignment statements are used to set variables to specific or computed values.    Variables may be set
to integers or strings or floating point numbers.

Examples:
a = 5
value = Average(a, 10, 15)
location = "Northern Hemisphere"
world = StrCat(location, " ", "Southern Hemisphere")

Control Statements
Control statements are generally used to execute system management functions and consist of a call to a
command without assigning any return values.

Examples:
Exit While For
Yield Switch Return

Substitution
The WIL language has a powerful substitution feature which inserts the contents of a string variable into a
statement before the line is parsed.

To substitute the contents of a variable in the statement, simply put a percent-sign (%) on both sides of
the variable name.

Examples:
mycmd = "DirChange('c:\')" ;set mycmd to a command
%mycmd% ;execute the command

Or consider this one:
IniWrite("PC", "User", "Richard")
...
name = IniRead("PC", "User", "somebody")
message("", "Thank you, %name%")

will produce this message box:

The variable substitution feature can be used to simulate an "array" of strings.    For example, if you
wanted to read the lines contained in a file into an array of variables named line1 through line# (where #
is the line number of the last line in the file), and then write them to a new file in reverse order, you could
do so as follows:
handle = FileOpen("c:\config.sys", "READ")
num = 0
line0=""
While line%num% != "*EOF*"

num = num + 1
line%num% = FileRead(handle)

EndWhile
FileClose(handle)
handle = FileOpen("c:\config.rev", "WRITE")
While num > 1

num = num - 1
FileWrite(handle, line%num%)

EndWhile
FileClose(handle)
Message("Processing complete", "CONFIG.REV created")

To put a single percent-sign (%) on a source line, specify a double percent sign(%%).    This is required
even inside quoted strings.

Note:    The length of a line, after any substitution occurs, may not exceed 255 characters.

Function Parameters

Most of the functions and commands in the language require parameters.    These come in
several types:

Integer
Floating point number
String
List
Variable name

The interpreter performs automatic conversions between strings, integers and floating point numbers, so
that you can use them interchangeably.    In general, the only case to be careful of is comparing two
floating point numbers -- floating point numbers have a habit of never being quite equal when you want
them to.

Integer parameters may be any of the following:
An integer (i.e. 23)
A string representing an integer (i.e. "23")
A variable containing an integer
A variable containing a string representing an integer

Floating point parameters may be any of the following:
A floating point number (i.e. 3.141569)
A string representing an integer (i.e. "314.1569E-2")
A variable containing a floating point number
A variable containing a string representing a floating point
number

String parameters may be any of the following:
A string
An integer
A variable containing a string
A variable containing a list
A variable containing an integer
A variable containing a floating point number

Error Handling
There are three types of errors that can occur while processing a WIL program:    Minor, Moderate, and
Fatal.    What happens when an error occurs depends on the current error mode, which is set with the
ErrorMode function.

There are three possible modes you can specify:

@CANCEL
User is notified when any error occurs, and then the WIL program is canceled.    This is the
default.

@NOTIFY
User is notified when any error occurs, and has option to continue unless the error is fatal.

@OFF
User is only notified if the error is moderate or fatal.    User has option to continue unless the error
is fatal.

The function LastError returns the code of the most-recent error encountered during the currently-
executing WIL program.

Minor errors are numbered from 1000 to 1999.
Moderate errors are numbered from 2000 to 2999.
Fatal errors are numbered from 3000 to 3999.

Error handling is reset to @CANCEL at the start of each WIL program.

Note:    You must read the section on the ErrorMode function completely before attempting to use the
function to suppress run-time errors.

Arithmetic Functions

Abs(integer)
Returns the absolute value of a number.

Acos(fp_num)
Calculates the arccosine.

Asin(fp_num)
Calculates the arcsine.

Atan(fp_num)
Calculates the arc tangent.

Average(number [,number...])   
Returns the average of a list of numbers.

Ceiling(fp_num)
Calculates the ceiling of a value.

Char2Num(string   )
Returns the ANSI code of a string's first character.

Cos(fp_num)
Calculates the cosine.

Cosh(fp_num)
Calculates the hyperbolic cosine.

Decimals(#digits)
Sets the number of decimal points used with floating point numbers.

Exp(fp_num)
Calculates the exponential.

Fabs(fp_num)
Calculates the absolute value of a floating-point argument.

Floor(fp_num)
Calculates the floor of a value.

Int(string/fp_num)
Converts a floating point number or a string to an integer.

IsFloat(value)
Tests whether a number can be converted to a floating point number.

IsInt(string)
Tests whether a number can be converted into a valid number.

IsNumber(value)

Determines if a string represents a valid number.

Log10(fp_num)
Calculates the base-10 logarithm.

Loge(fp_num)
Calculates the natural logarithm.

Max(number [,number...])
Determines the highest number in a list.

Min(number [,number...])
Determines the lowest number in a list.

Num2Char(integer)
Converts a number to its character equivalent.

Random(integer)
Generates a positive random number.

Sin(fp_num)
Calculates the sine.

Sinh(fp_num)
Calculates the hyperbolic sine.

Sqrt(fp_num)
Calculates the square root.

Tan(fp_num)
Calculates the tangent.

Tanh(fp_num)
Calculates the hyperbolic tangent.

TimeAdd(YmdHms, YmdHms)
Adds two YmdHms variables.

TimeDiffDays(Ymd[Hms], Ymd[Hms])
Returns the difference in days between the two dates.

TimeDiffSecs(YmdHms, YmdHms)
Returns the time difference in seconds between the two date times.   

TimeJulianDay(Ymd[Hms])
Returns the julian day given a date/time.

TimeJulToYmd(julian-date)
Returns the Julian day given a datetime.

TimeSubtract(datetime, datetime difference)
Subtracts one YmdHms variable from another.

Binary Functions

BinaryAlloc(buffsize)
Allocates a memory buffer of the desired size.

BinaryCopy(handle targ, offset targ, handle src, offset src, bytecount)
Copies bytes of data from one binary buffer to another.

BinaryEodGet(handle)
Returns the offset of the free byte just after the last byte of stored data.

BinaryEodSet(handle, offset)
Sets the EOD value of a buffer.

BinaryFree(handle)
Frees a buffer previously allocated with Binary Alloc.

BinaryIndex(handle, offset, search string, direction)
Searches a buffer for a string.

BinaryIndexNC(handle, offset, string, direction)

Searches a buffer for a string. (case insensitive)

BinaryPeek(handle, offset)
Returns the value of a byte from a binary buffer.

BinaryPeekStr(handle, offset, maxsize)
Extracts a string from a binary buffer.

BinaryPoke(handle, offset, value)
Pokes a new value into a binary buffer at offset.

BinaryPokeStr(handle, offset, string)
Writes a string into a binary buffer.

BinaryRead(handle, filename)
Reads a file into a binary buffer.

BinaryStrCnt(handle, start-offset, end-offset, string)
Counts the occurrences of a string in some or all of a binary buffer.

BinaryWrite(handle, filename)
Writes a binary buffer to a file.

Clipboard Handling

ClipAppend(string)
Appends a string to the end of the Clipboard.

ClipGet(   )
Returns the Clipboard contents into a string.

ClipPut(string)
Replaces the Clipboard contents with a string.

Snapshot(request#)
Takes a snapshot of the screen and pastes it to the clipboard.

DDE Functions

DDEExecute(channel, [commandstring])
Sends commands to a DDE server application.

DDEInitiate(app name, topic name)
Opens a DDE channel.

DDEPoke(channel, item name, item value)
Sends data to a DDE server application.

DDERequest(channel, item name)
Gets data from a DDE server application.

DDETerminate(channel)
Closes a DDE channel.

DDETimeout(value in seconds)
Sets the DDE time-out value.

Directory Management

DirAttrGet([d:]path)
Gets directory attributes.

DirAttrSet(dir-list, settings)
Sets directory attributes.

DirChange([d:]path)
Changes the current directory.

DirExist(pathname)
Determines if a directory exists.

DirGet(   )
Returns the current directory path.

DirHome(   )
Returns the initial directory path.

DirItemize(dir-list)
Builds a list of directories.

DirMake([d:]path)
Creates a new directory.

DirRemove(dir-list)
Removes an existing directory.

DirRename([d:]oldpath, [d:]newpath)
Renames a directory.

DirWindows(request#)
Returns the name of the Windows or Windows System directory.

Disk Drive Management

DiskExist(drive letter)
Tests for the existence of a drive.

DiskFree(drive-list)
Returns the amount of free space on a set of drives.

DiskScan(request#)
Returns a list of drives.

LogDisk(drive letter)
Logs (activates) a disk drive.

NetInfo(request code)
Determines network(s) installed.

Displaying Information

About(   )
Displays the About message box.

AskFileName(title, directory, filetypes, default filename, flag)
 Returns the filename as selected by a FileOpen dialog box.

AskItemlist(title, list, delimiter, sort mode, select mode)
Allows the user to choose an item from a list box initialized with a list variable.

Debug(mode)
Turns the Debug mode on or off.

DebugData(string, string)
Writes data via the Windows OutputDebugString function to the default destination.

Dialog(dialog-name)
Displays a user-defined dialog box.

Display(seconds, title, text)
Momentarily displays a string.

Message(title, text)
Displays text in a message box.

Pause(title, prompt)
Displays Text in a message box.

Print(data file, directory, display mode, waitflag)
Instructs an application associated to a file to print the file on the default printer.

Sounds(request#)
Turns sounds on or off.

Terminate(condition, title, text)
Conditionally ends a WIL program.

DLLCall

DllCall(dllfilename/dllhandle, returntype:entrypoint [,paramtype:param...])
Calls an external Dll.

DllFree(dllhandle)
Frees a Dll that was loaded via the DllLoad function.

DllHinst(partial-winname)
Obtains an application instance handle for use in DllCall's when required.

DllHwnd(partial-winname)
Obtains a window handle for use in DllCall's when required.

DllLoad(dllname)
Loads a Dll for later use via the DllCall function.

File Management

AskFileName(title, directory, filetypes, default filename, flag)
Returns the filename as selected by a FileOpen dialog box.

AskFileText(title, filename, sort mode, select mode)
Allows the user to choose an item from a list box initialized with data from a file.

BinaryRead(handle, filename)
Reads a file into a binary buffer.

BinaryWrite(handle, filename)
Writes a binary buffer to a file.

FileAppend(source-list, destination)
Appends one or more files to another file.

FileAttrGet(filename)
Returns file attributes.

FileAttrSet(file-list, settings)
Sets file attributes.

FileClose(filehandle)
Closes a file.

FileCompare(filename1, filename2)
Compares two files.

FileCopy(source-list, destination, warning)
Copies files.

FileDelete(file-list)
Deletes files.

FileExist(filename)
Test for the existence of files.

FileExtension(filename)
Returns the extension of a file.

FileFullName(partial filename)
Returns a file name with drive and path information.

FileItemize(file-list)
Builds a list of files.

FileLocate(filename)
Finds a file within the current DOS path.

FileMapName(filename, mapping-data)

Transforms a filename with a file wild-card mask and returns a new filename.

FileMove(source-list, destination, warning)
Moves files to another set of path names.

FileNameLong {*32}(filename)
Returns the long version of a filename.

FileNameShort {*32}(filename)
Returns the short (ie, 8.3) version of a filename.

FileOpen(filename, mode)
Opens a STANDARD ASCII (only) file for reading or writing.

FilePath(filename)
Returns path of a file.

FileRead(filehandle)
Reads data from a file.

FileRename(source-list, destination)
Renames files to another set of names.

FileRoot(filename)
Returns root of a file.

FileSize(file-list)
Adds up the total size of a set of files.

FileTimeCode(filename)
Returns a machine readable/computable code for a file time.

FileTimeGet(filename)
Returns file date and time.

FileTimeSet(list, ymdhms)
Sets the date and time of one or more files.

FileTimeTouch(file-list)
Sets file(s) to current time.

FileWrite(handle, output-data)
Writes data to a file.

FileYmdHms(filename)
Returns a file time in the YmdHms date/time format.

IconReplace(filename, icon filename)
Replaces an existing icon with a new icon.

IniDelete(section, keyname)
Removes a line or section from WIN.INI.

IniDeletePvt(section, keyname, filename)
Removes a line or section from a private INI file.

IniItemize(section)
Lists keywords or sections in WIN.INI file.

IniItemizePvt(section, filename)
List keywords or sections in a private INI file.

IniRead(section, keyname, default)
Reads a string from the WIN.INI file.

IniReadPvt(section, keyname, default, filename)
Reads a string from a private INI file.

IniWrite(section, keyname, data)
Writes a string to the WIN.INI file.

IniWritePvt(section, keyname, data, filename)
Writes a string to a private INI file.

InstallFile(filename, targname, default-targdir, delete-old, flags)
Installs a file.

Print(data file, directory, display mode, waitflag)
Instructs an application associated to a file to print the file on the default printer.

ShortcutEdit {*95}(link-name, target, params, start-dir, show-mode)
Modifies the specified shortcut file.

ShortcutExtra {*95}(link-name, description, hotkey, icon-file, icon-index)
Sets additional information for the specified shortcut file.

ShortcutInfo {*95}(link-name)
Returns information on the specified shortcut file.

ShortcutMake {*95}(link-name, target, params, start-dir, show-mode)
Creates a Windows 95 shortcut for the specified filename or directory.

Important Functions

AskFileName(title, directory, filetypes, default filename, flag)
Returns the filename as selected by a FileOpen dialog box.

AskFileText(title, filename, sort mode, select mode)
Allows the user to choose an item from a list box initialized with data from a file.

AskItemList(title, list, delimiter, sort mode, select mode)
Allows the user to choose an item from a list box initialized with a list variable.

AskLine(title, prompt, default answer)
Lets the user enter a line of information.

AskYesNo(title, question)
Lets the user choose from Yes, No, or Cancel.

Debug(mode)
Turns the Debug mode on or off.

Dialog(dialog-name)
Displays a user-defined dialog box.

DirChange([d:]path)
Changes the current directory.

Display(seconds, title, text)
Momentarily displays a string.

EndSession(   )
Ends the current Windows session.

FileCopy(source-list, filename/mask, mode)
Copies files.

For      varname = initial value to final value [by increment]
Controls the looping of a block of code base in an incrementing index.

GoSub   
Transfers control of WIL processing while saving location of the next statement.

If ... Else ... Endifexpression
Conditionally performs a function.

IniReadPvt(    section, keyname, default, filename)
Reads a string from a private INI file.

IsKeyDown(keycode)
Determines if the Shift key or the Ctrl key is currently down.

ItemCount(list, delimiter)

Returns the number of items in a list.

ItemExtract(index, list, delimiter)
Returns the selected item from a list.

Message(title, text)
Displays text in a message box.

NetInfo(request code)
Determines network(s) installed.

Pause(title, text)
Displays Text in a message box.

Print(data file, directory, display mode, waitflag)
Instructs an application associated to a file to print the file on the default printer.

RegQueryBin {*32}(handle, subkey-string)
Returns binary value at subkey position.

RegQueryDword {*32}(handle, subkey-string)
Returns DWORD value at subkey position.

RegQueryItem {*32}(handle, subkey-string)
Returns a list of named data items for a subkey.

RegQueryValue(keyhandle, sub-key string)
Returns data item string at sub-key position.

RegSetBin {*32} (handle, subkey-string, value)
Sets a binary value in the Registration Database.

RegSetDword {*32} (handle, subkey-string, value)
Sets a DWORD value in the Registration Database.

RegSetValue(keyhandle, sub-key string, value)
Sets the value of a data item in the registration database.

RunShell(program-name, params, directory, displaymode, waitflag)
Runs a program via the Windows ShellExecute Command.

SendKeysTo(partial-parent-windowname,    send-key string)
Sends keystrokes to a "windowname".

SendMenusTo(partial-parent-windowname, menuname)
Activates a window and sends a specified menu option.

ShellExecute (program-name, params, directory, display mode, operation)
Runs a program via the Windows ShellExecute command

StrCat(string [,string])
Concatenates strings together.

StrLen(string)
Returns the length of a string.

StrReplace(string, old, new)
Replaces all occurrences of a sub-string with another.

StrSub(string, startpos, length)
Returns a sub-string from within a string.

Switch varname
Allows selection among multiple blocks of statements.

TimeDelay(seconds)
Pauses execution for a specified amount of time.

TimeWait(YmdHms)
Pauses execution and waits for the date/time to pass.

While    expression
Conditionally and/or repeatedly executes a series of statements.

WinClose(partial-winname)
Closes an application window.

WinExist(partial-winname)
Tells if a window exists.

WinIsDos(partial-winname)
Tells whether or not a particular window is a DOS or console-type window.

WinMetrics(request#)
Returns Windows system information.

WinShow(partial-winname)
Shows a window in its "normal" state.

Inputting Information

AskFileName(title, directory, filetypes, default filename, flag)
Returns the filename as selected by a FileOpen dialog box.

AskFileText(title, filename, sort mode, select mode)
Allows the user to choose an item from a list box initialized with data from a file.

AskItemList(title, list, delimiter, sort mode, select mode)
Allows the user to choose an item from a list box initialized with a list variable.

AskLine(title, prompt, default answer)
Lets the user enter a line of information.

AskPassword(title, prompt)
Prompts the user for a password.

AskYesNo(title, question)
Lets the user choose from Yes, No, or Cancel.

variable.

ButtonNames(Ok-name, Cancel-name)
Changes the names of the buttons which appear in WIL dialogs.

Display(seconds, title, text)
Momentarily displays a string.

IgnoreInput(mode)
Turns off hardware input to windows.

IsKeyDown(keycode)
Determines if the Shift key or the Ctrl key is currently down.

KeyToggleGet(keycode)
Returns the status of a toggle key.

Pause(title, prompt)
Displays Text in a message box.

Sounds(request#)
Turns sounds on or off.

InterProgram Communication

AddExtender(dllfilename)
Installs a WIL extender Dll.

ClipAppend(string)
Appends a string to the end of the Clipboard.

ClipGet(   )
Returns the Clipboard contents into a string.

ClipPut(string)
Replaces the Clipboard contents with a string.

DDEExecute(channel, [commandstring])
Sends commands to a DDE server application.

DDEInitiate(app name, topic name)
Opens a DDE channel.

DDEPoke(channel, item name, item value)
Sends data to a DDE server application.

DDERequest(channel, item name)
Gets data from a DDE server application.

DDETerminate(channel)
Closes a DDE channel.

DDETimeout(value in seconds)
Sets the DDE time-out value.

EnvironSet(env-varname, newvalue)
Changes LOCAL Environment variables.

IntControl(request#, p1, p2, p3, p4)
Special function which permits an internal operation.

MsgTextGet(msgboxtitle)
Returns the contents of a Windows message box.

MouseClick(click-type, modifiers)
Clicks mouse button(s).

MouseClickBtn(parent-windowname, child-windowname, button-text)
Clicks on the specified button control.

MouseMove(X, Y, parent-windowname, child-windowname)
Moves the mouse to the specified X-Y coordinates.

ObjectClose(objecthandle)

Closes OLE 2.0 automation object.

ObjectOpen(objectname)
Opens or creates an OLE 2.0 automation object.

Print(data file, directory, display mode, waitflag)
Instructs an application associated to a file to print the file on the default printer.

SendKey(sendkey-string)
Sends keystrokes to the currently active window.

SendKeysChild(partial-parent-windowname, partial-child-windowname, sendkey-
string)

Sends keystrokes to the active child window.

SendKeysTo(partial-parent-windowname, sendkey-string)
Sends keystrokes to a "windowname".

SendMenusTo(partial-parent-windowname, menuname)
Activates a window and sends a specified menu option.

WinActivate(partial-winname)
Makes an application window the active window.

WinActivChild(partial-parent-windowname, partial-child-windowname)
Activates a previously running child window.

WinClose(partial-winname)
Closes an application window.

WinCloseNot(partial-winname [,partial-winname])   
Closes all application windows except those specified.

WinExeName(partial-winname)
Returns the name of the executable file which created a specified window.

WinExistChild(partial-parent-windowname, partial-child-windowname)
Tells if a specified child window exists.

WinGetActive(   )
Gets the title of the active window.

WinIdGet(partial-winname)
Returns a unique "Window ID" (pseudo-handle) for the specified window name.

WinIsDOS(partial-winname)
Tells whether or not a particular window is a DOS or console-type window.

WinItemChild(partial-parent-windowname)
Returns a list of all the child windows under this parent.

WinItemize(   )
Lists all the main windows currently running.

WinItemNameId()

Returns a list of all open windows and their Window ID's.

WinState(partial-winname)
Returns the current state of a window.

Yield
Pauses WIL processing so other applications can process some messages.

Menu Management

IsMenuChecked(menuname)
Determines if a menu item has a check mark next to it.

IsMenuEnabled(menuname)
Determines if a menu item has been enabled.

MenuChange(menuname, flags)
Checks, unchecks, enables, or disables a menu item.

Miscellaneous Functions

About(   )
Displays the About message box.

AddExtender(dllfilename)
Installs a WIL extender Dll.

Beep
Beeps at the user.

Decimals(#digits)
Sets the number of decimal points used with floating point numbers.

DllCall(dllfilename/dllhandle, returntype:entrypoint
[,paramtype:param...])

Calls an external Dll.

DllLoad(dllname)
Loads a Dll for later use via the DllCall function.

Drop(varname [,varname...])
Deletes variables to recover their memory.

EndSession(   )
Ends the current Windows session.

ErrorMode(mode)
Sets what happens in the event of an error.

Exclusive(mode)
Controls whether or not other Windows programs will get any time to execute.

Execute    statement
Directly executes a WIL statement.

ExeTypeInfo(exefilename)
Returns an integer describing the type of EXE file specified.

IconReplace(filename, iconfilename)
Replaces an existing icon with a new icon.

IgnoreInput(mode)
Turns off hardware input to windows.

IntControl(request#, p1, p2, p3, p4)
Special function which permits an internal operation.

IsDefined (variable name)
Determines if a variable name is currently defined.

IsFloat(value)
Tests whether a number can be converted to a floating point number.

IsInt(string)
Tests whether a number can be converted into a valid number.

IsKeyDown(keycode)
Determines if the Shift key or the Ctrl key is currently down.

IsLicensed(   )
Tells if the calling application is licensed.

IsNumber(value)
Determines if a string represents a valid number.

KeyToggleGet(@key)
Returns the status of a toggle key.

KeyToggleSet(@key, value)
Sets the state of a toggle key and returns the previous value.

LastError(   )
Returns the last error encountered.

MouseClick(click-type, modifiers)
Clicks mouse button(s).

MouseClickBtn(parent-windowname, child-windowname, button-text)
Clicks on the specified button control.

MouseInfo(request#)
Returns assorted mouse information.

MouseMove(X, Y, parent-windowname, child-windowname)
Moves the mouse to the specified X-Y coordinates.

MsgTextGet(window-name)
Returns the contents of a Windows message box.

NetInfo(request code)
Determines network(s) installed.

ParseData(string)
Parses a passed string.

Sounds(request#)
Turns sounds on or off.

Version(   )
Returns the version of the parent program currently running.

VersionDLL(   )
Returns the version of the WIL interpreter currently running.

WallPaper(bmp-filename, tilemode)

Changes the Windows wallpaper.

Yield
Pauses WIL processing so other applications can process some messages.

Multimedia Functions

DllCall(dllfilename/dllhandle, returntype:entrypoint [,paramtype:param...])
Calls an external Dll.

DllFree(dllhandle)
Frees a Dll that was loaded via the DllLoad function.

DllHinst(partial-winname)
Obtains an application instance handle for use in DllCall's when required.

DllHwnd(partial-winname)
Obtains a window handle for use in DllCall's when required.

DllLoad(dllname)
Loads a Dll for later use via the DllCall function.

PlayMedia(command-string)
Controls multimedia devices.

PlayMidi(filename, mode)
Plays a MID or RMI sound file.

PlayWaveForm(filename, mode)
Plays a WAV sound file.

Sounds(request#)
Turns sounds on or off.

Network Functions

AddExtender(dllfilename)
Installs a WIL extender Dll.

NetInfo(request#)
Determines network(s) installed.

OLE2.0

ObjectClose(objecthandle)
Closes OLE 2.0 automation object.

ObjectOpen(objectname)
Opens or creates an OLE 2.0 automation object.

Process Control

AddExtender(dllfilename)
Installs a WIL extender Dll.

AppWaitClose(program-name)
Suspends WIL program execution until a specified application has been closed.

Break
Used to exit a conditional flow control statement.

Call(wilfilename, parameters)
Calls a WIL batch file as a subroutine.

Continue   
Transfers control to the beginning of a For or While loop or to a different case statement.

Debug(mode)
Turns the Debug mode on or off.

DebugData(string, string)
Writes data via the Windows OutputDebugString function to the default destination.

DllCall(dllfilename/dllhandle, returntype:entrypoint [,paramtype:param...])
Calls an external Dll.

DllFree(dllhandle)
Frees a Dll that was loaded via the DllLoad function.

DllHinst(partial-winname)
Obtains an application instance handle for use in DllCall's when required.

DllHwnd(partial-winname)
Obtains a window handle for use in DllCall's when required.

DllLoad(dllname)
Loads a Dll for later use via the DllCall function.

Drop (varname [,varname...])
Deletes variables to recover their memory.

EndSession(   )
Ends the current Windows session.

ErrorMode(mode)
Sets what happens in the event of an error.

Exclusive(mode)
Controls whether or not other Windows programs will get any time to execute.

Execute    statement

Directly executes a WIL statement.

Exit
Unconditionally ends a WIL program.

For      varname = initial value to final value [by increment]
Controls the looping of a block of code base in an incrementing index.

GoSub   
Transfers control of WIL processing while saving location of the next statement.

Goto    label
Changes the flow of control in a WIL program.

If    / Else / Endifexpression
Conditionally performs a function.

IgnoreInput(mode)
Turns off hardware input to windows.

LastError(   )
Returns the last error encountered.

Return   
Returns from a Call to the calling program or from a GoSub :label.

Select    varname
Allows selection among multiple blocks of statements.

Switch varname
Allows selection among multiple blocks of statements.

Terminate(expression, title, message)
Conditionally ends a WIL program.

TimeDelay(seconds)
Pauses execution for a specified amount of time.

TimeWait(YmdHms)
Pauses execution and waits for the date/time to pass.

Version(   )
Returns the version of the parent program currently running.

VersionDLL(   )
Returns the version of the WIL interpreter currently running.

WaitForKey(key,    key,    key, key, key)
Waits for a specific key to be pressed.

While    expression
Conditionally and/or repeatedly executes a series of statements.

WinIsDos(partial-winname)
Tells whether or not a particular window is a DOS or console-type window.

WinResources(request#)
Returns information on available memory and resources.

WinState(partial-winname)
Returns the current state of a window.

WinSysInfo()
Returns system configuration information.

WinVersion(request#)
Returns the version of Windows that is currently running.

WinWaitClose(partial-winname)
Waits until an application window is closed.

Yield
Pauses WIL processing so other applications can process some messages.

Program Management

AppExist(program-name)
Tells if an application is running.

AppWaitClose(program-name)
Suspends WIL program execution until a specified application has been closed.

DllCall(dllfilename/dllhandle, returntype:entrypoint [,paramtype:param...])
Calls an external Dll.

DllLoad(dllname)
Loads a Dll for later use via the DllCall function.

EnvironSet(env-varname, newvalue)
Changes LOCAL Environment variables.

ObjectClose(objecthandle)
Closes OLE 2.0 automation object.

ObjectOpen(objectname)
Opens or creates an OLE 2.0 automation object.

Print(data file, directory, display mode, waitflag)
Instructs an application associated to a file to print the file on the default printer.

Run(program-name, parameters)
Runs a program as a normal window.

RunEnviron(program name, parameters, displaymode, waitflag)
Launches a program in the current environment as set with the EnvironSet command.

RunExit(program-name, parameters)
Exits Windows, runs a DOS program or batch file then restarts windows when DOS is finished.

RunHide(program-name, parameters)
Runs a program as a hidden window.

RunHideWait(program-name, parameters)
Runs a program in a hidden window and waits for it to close.

RunIcon(program-name, parameters)
Runs a program as an icon.

RunIconWait(program-name, parameters)
Runs a program as an icon and waits for it to close.

RunShell(program-name, params, directory, displaymode, waitflag)
Runs a program via the Windows ShellExecute Command.

RunWait(program-name, parameters)

Runs a program as a normal window and waits for it to close.

RunZoom(program-name, parameters)
Runs a program in a maximized window.

RunZoomWait(program-name, parameters)
Runs a program in a maximized window and waits for it to close.

ShellExecute (program-name, params, directory, display mode, operation)
Runs a program via the Windows ShellExecute command

Registration Functions

RegApp {*32}(program-name, path)
Creates registry entries for a program under "App Paths".

RegCloseKey(keyhandle)
Closes a key to the registration database.

RegCreateKey(keyhandle, sub-key string)
Returns a handle to a new registration database key.

RegDeleteKey(keyhandle, sub-key string)
Deletes a key and data items associated with the key.

RegDelValue {*32}(handle, subkey-string)
Deletes a named value data item for the specified subkey from the registry.

RegOpenKey(keyhandle, sub-key string)
Returns a handle to an existing registration database key.

RegQueryBin {*32}(handle, subkey-string)
Returns binary value at subkey position.

RegQueryDword {*32}(handle, subkey-string)
Returns DWORD value at subkey position.

RegQueryItem {*32}(handle, subkey-string)
Returns a list of named data items for a subkey.

RegQueryKey(keyhandle, index)
Returns sub keys of the specified key.

RegQueryValue(keyhandle, keyname)
Returns data item string at sub-key position.

RegSetBin {*32} (handle, subkey-string, value)
Sets a binary value in the Registration Database.

RegSetDword {*32} (handle, subkey-string, value)
Sets a DWORD value in the Registration Database.

RegSetValue(keyhandle, sub-key string, value)
Sets the value of a data item in the registration database.

String Handling

BinaryPeekStr(handle, offset, maxsize)
Extracts a string from a binary buffer.

BinaryPokeStr(handle, offset, string)
Writes a string into a binary buffer.

Char2Num(string)
Returns the ANSI code of a string's first character.

ClipAppend(string)
Appends a string to the end of the Clipboard.

ClipGet(   )
Returns the Clipboard contents into a string.

ClipPut(string)
Replaces the Clipboard contents with a string.

Decimals(#digits)
Sets the number of decimal points used with floating point numbers.

Drop (varname [,varname...])
Deletes variables to recover their memory.

Environment(env-variable)
Gets a DOS environment variable.

EnvItemize(   )
Returns a delimited list of the current environment.

FileExtension(filename)
Returns the extension of a file.

FileFullName(partial filename)
Returns a file name with drive and path information.

FileItemize(file-list)
Builds a list of files.

FileLocate(filename)
Finds a file within the current DOS path.

FileMapName(filename, mapping data)
Transforms a filename with a file wild-card mask and returns a new filename.

FilePath(filename)
Returns path of a file.

FileRoot(filename)

Returns root of a file.

FileYmdHms(filename)
Returns a file time in the YmdHms date/time format.

IsFloat(string)
Tests whether a number can be converted to a floating point number.

IsInt(string)
Tests whether a number can be converted into a valid number.

IsNumber(value)
Determines if a string represents a valid number.

ItemCount(list, delimiter)
Returns the number of items in a list.

ItemExtract(index, list, delimiter)
Returns the selected item from a list.

ItemInsert(item, index, list, delimiter)
Adds an item to a list.

ItemLocate(item, list, delimiter)
Returns the position of an item in a list.

ItemRemove(index, list, delimiter)
Removes an item from a list.

ItemSort(list, delimiter)
Sorts a list.

Num2Char(integer)
Converts a number to its character equivalent.

ParseData(string)
Parses a passed string.

StrCat(string [,string])
Concatenates strings together.

StrCharCount(string)
Counts the number of characters in a string.

StrCmp(string1, string2)
Compares two strings.

StrFill(filler, length)
Builds a string from a repeated smaller string.

StrFix(base-string, pad-string, length)
Pads or truncates a string to a fixed length.

StrFixChars(base-string, pad-string, length)
Pads or truncates a string To a fixed length using characters.

StrIndex(string, sub-string, start, direction)
Locates a string within a larger string.

StrLen(string)
Returns the length of a string.

StrLower(string)
Converts a string to all lower-case characters.

StrReplace(string, old, new)
Replaces all occurrences of a sub-string with another.

StrScan(string, delimiters, startpos, direction)
Finds an occurrence of one or more delimiter characters in a string.

StrSub(string, startpos, length)
Returns a sub-string from within a string.

StrTrim(string)
Trims leading and trailing blanks from a string.

StrUpper(string)
Converts a string to all upper-case characters.

WinItemize(   )
Lists all the main windows currently running.

WinItemNameId()
Returns a list of all open windows and their Window ID's.

System Information

About(   )
Displays the About message box.

AddExtender(dllfilename)
Installs a WIL extender Dll.

AppExist(program-name)
Tells if an application is running.

AppWaitClose(program-name)
Suspends WIL program execution until a specified application has been closed.

Beep
Beeps at the user.

Debug(mode)
Turns the Debug mode on or off.

DebugData(string, string)
Writes data via the Windows OutputDebugString function to the default destination.

DirHome(   )
Returns the initial directory path.

DirWindows(request#)
Returns the name of the Windows or Windows System directory.

DiskExist(drive letter)
Tests for the existence of a drive.

DiskFree(drive-list)
Returns the amount of free space on a set of drives.

DiskScan(request#)
Returns a list of drives.

DllCall(dllfilename/dllhandle, returntype:entrypoint [,paramtype:param...])
Calls an external Dll.

DllFree(dllhandle)
Frees a Dll that was loaded via the DllLoad function.

DllHinst(partial-winname)
Obtains an application instance handle for use in DllCall's when required.

DllHwnd(partial-winname)
Obtains a window handle for use in DllCall's when required.

DllLoad(dllname)

Loads a Dll for later use via the DllCall function.

DOSVersion(level)
Returns the version numbers of the current version of DOS.

Drop(varname [,varname...])
Deletes variables to recover their memory.

EndSession(   )
Ends the current Windows session.

Environment(env-variable)
Gets a DOS environment variable.

EnvironSet(env-varname, newvalue)
Changes LOCAL Environment variables.

EnvItemize(   )
Returns a delimited list of the current environment.

ErrorMode(mode)
Sets what happens in the event of an error.

Exclusive(mode)
Controls whether or not other Windows programs will get any time to execute.

Executestatement
Directly executes a WIL statement.

ExeTypeInfo(exefilename)
Returns an integer describing the type of EXE file specified.

Exit
Unconditionally ends a WIL program.

FileFullName(partial filename)
Returns a file name with drive and path information.

FileMapName(filename, mapping-data)
Transforms a filename with a file wild-card mask and returns a new filename.

FileTimeCode(filename)
Returns a machine readable/computable code for a file time.

FileTimeGet(filename)
Returns file date and time.

FileTimeSet(list, ymdhms)
Sets the date and time of one or more files.

FileTimeTouch(file-list)
Sets file(s) to current time.

GetExactTime(   )
Returns the current time in hundredths of a second.

GetTickCount(   )
Returns the number of clock ticks used by Windows since Windows started.

IgnoreInput(mode)
Turns off hardware input to windows.

IntControl(request#, p1, p2, p3, p4)
Special function which permits an internal operation.

KeyToggleGet(@key)
Returns the status of a toggle key.

KeyToggleSet(@key, value)
Sets the state of a toggle key and returns the previous value.

LastError(   )
Returns the last error encountered.

MouseInfo(request#)
Returns assorted mouse information.

MsgTextGet(window-name)
Returns the contents of a Windows message box.

NetInfo(request code)
Determines network(s) installed.

ObjectClose(objecthandle)
Closes OLE 2.0 automation object.

ObjectOpen(objectname)
Opens or creates an OLE 2.0 automation object.

PlayMedia (command-string)
Controls multimedia devices.

PlayMidi(filename, mode)
Plays a MID or RMI sound file.

PlayWaveForm(filename, mode)
Plays a WAV sound file.

RegCloseKey(keyhandle)
Closes a key to the registration database.

RegCreateKey(keyhandle, sub-key string)
Returns a handle to a new registration database key.

RegDeleteKey(keyhandle, sub-key string)
Deletes a key and data items associated with the key.

RegOpenKey(keyhandle, sub-key string)
Returns a handle to an existing registration database key.

RegQueryBin {*32}(handle, subkey-string)

Returns binary value at subkey position.

RegQueryDword {*32}(handle, subkey-string)
Returns DWORD value at subkey position.

RegQueryItem {*32}(handle, subkey-string)
Returns a list of named data items for a subkey.

RegQueryKey(keyhandle, index)
Returns sub keys of the specified key.

RegQueryValue(keyhandle, keyname)
Returns data item string at sub-key position.

RegSetBin {*32} (handle, subkey-string, value)
Sets a binary value in the Registration Database.

RegSetDword {*32} (handle, subkey-string, value)
Sets a DWORD value in the Registration Database.

RegSetValue(keyhandle, sub-key string, value)
Sets the value of a data item in the registration database.

Snapshot(request#)
Takes a snapshot of the screen and pastes it to the clipboard.

Sounds(request#)
Turns sounds on or off.

Terminate(expression, title, message)
Conditionally ends a WIL program.

Version(   )
Returns the version of the parent program currently running.

VersionDLL(   )
Returns the version of the WIL interpreter currently running.

WinExeName(partial-winname)
Returns the name of the executable file which created a specified window.

WinExist(partial-winname)
Tells if a window exists.

WinExistChild(partial-parent-windowname, partial-child-windowname)
Tells if a specified child window exists.

WinGetActive(   )
Gets the title of the active window.

WinHelp(helpfile, function, keyword)
Calls a Windows help file.

WinIsDOS(partial-winname)
Tells whether or not a particular window is a DOS or console-type window.

WinItemChild(partial-parent-windowname)
Returns a list of all the child windows under this parent.

WinItemize(   )
Lists all the main windows currently running.

WinItemNameId()
Returns a list of all open windows and their Window ID's.

WinMetrics(request#)
Returns Windows system information.

WinName(   )
Returns the name of the window calling the WIL Interpreter.

WinParmGet(request#)
Returns system information.

WinParmSet(request#, new-value, ini-control)
Sets system information.

WinResources(request#)
Returns information on available memory and resources.

WinState(partial-winname)
Returns the current state of a window.

WinSysInfo() {*32}()
Returns system configuration information.

WinVersion(level)
Returns the version of Windows that is currently running.

Yield
Pauses WIL processing so other applications can process some messages.

Time Functions

FileTimeCode(filename)
Returns a machine readable/computable code for a file time.

FileTimeGet(filename)
Returns file date and time.

FileTimeSet(list, ymdhms)
Sets the date and time of one or more files.

FileTimeTouch(file-list)
Sets file(s) to current time.

FileYmdHms(filename)
Returns a file time in the YmdHms date/time format.

GetExactTime(   )
Returns the current time in hundredths of a second.

GetTickCount(   )
Returns the number of clock ticks used by Windows since Windows started.

TimeAdd(YmdHms, YmdHms)
Adds two YmdHms variables.

TimeDate(   )
Provides the current date and time in a readable format.

TimeDelay(seconds)
Pauses execution for a specified amount of time.

TimeDiffDays(Ymd[Hms], Ymd[Hms])
Returns the difference in days between the two dates.

TimeDiffSecs(YmdHms, YmdHms)
Returns the time difference in seconds between the two date times.   

TimeJulianDay(Ymd[Hms])
Returns the julian day given a date/time.

TimeJulToYmd(julian-date)
Returns the Julian day given a datetime.

TimeSubtract(datetime, datetime difference)
Subtracts one YmdHms variable from another.

TimeWait(YmdHms)
Pauses execution and waits for the date/time to pass.

TimeYmdHms(   )

Returns current date/time in the date/time format.

Yield
Pauses WIL processing so other applications can process some messages.

Window Management

DllHwnd(partial-winname)
Obtains a window handle for use in DllCall's when required.

IconArrange(   )
Rearranges icons.

WallPaper(bmp-filename, tilemode)
Changes the Windows wallpaper.

WinActivate(partial-winname)
Makes an application window the active window.

WinActivChild(partial-parent-windowname, partial-child-windowname)
Activates a previously running child window.

WinArrange(style)
Arranges all running application windows on the screen.

WinClose(partial-winname)
Closes an application window.

WinCloseNot(partial-winname [,partial-winname])   
Closes all application windows except those specified.

WinExeName(partial-winname)
Returns the name of the executable file which created a specified window.

WinExist(partial-winname)
Tells if a window exists.

WinExistChild(partial-parent-windowname, partial-child-windowname)
Tells if a specified child window exists.

WinGetActive(   )
Gets the title of the active window.

WinHide(partial-winname)
Hides an application window.

WinIconize(partial-winname)
Turns an application window into an icon.

WinIdGet(partial-winname)
Returns a unique "Window ID" (pseudo-handle) for the specified window name.

WinIsDOS(partial-winname)
Tells whether or not a particular window is a DOS or console-type window.

WinItemChild(partial-parent-windowname)

Returns a list of all the child windows under this parent.

WinItemize(   )
Lists all the main windows currently running.

WinItemNameId()
Returns a list of all open windows and their Window ID's.

WinName(   )
Returns the name of the window calling the WIL Interpreter.

WinParmGet(request#)
Returns system information.

WinParmSet(request#, new-value, ini-control)
Sets system information.

WinPlace(x-ulc, y-ulc, x-brc, y-brc,    partial-winname)
Changes the size and position of an application window on the screen.

WinPlaceGet(win-type partial-winname)
Returns window coordinates.

WinPlaceSet(win-type, partial-winname, position -string)
Sets window coordinates.

WinPosition(partial-winname)
Returns window position.

WinShow(partial-winname)
Shows a window in its "normal" state.

WinState(partial-winname)
Returns the current state of a window.

WinSysInfo() {*32}()
Returns system configuration information.

WinTitle(old-partial-winname, new-winname)
Changes the title of an application window.

WinWaitClose(partial-winname)
Waits until an application window is closed.

WinZoom(partial-winname)
Maximizes an application window to full-screen.

APPENDIX A    Constants

Predefined Constants

Floating Point Constants

String Constants

Predefined Constants

WIL provides you with a number of predefined integer constants to help make your WIL programs more
mnemonic:

Logical Conditions
@NO
@OFF
@TRUE
@YES
@ON

Window Arranging
@FALSE
@NORESIZE
@ABOVEICONS
@STACK
@ARRANGE
@TITLE
@ROWS
@COLUMNS

Window Status
@NORMAL
@ZOOMED
@ICON
@HIDDEN

Menu Handling
@CHECK
@UNCHECK
@DISABLE
@ENABLE

String Handling
@FWDSCAN
@BACKSCAN

System Control
@MAJOR

@MINOR

Error Handling
@CANCEL
@NOTIFY
@OFF

Keyboard Status
@SHIFT
@CTRL

OS Dependent
@CAPSLOCK
@NUMLOCK
@REGCLASSES
@REGCURRENT
@REGMACHINE
@REGROOT
@REGUSERS
@SCROLLLOCK
@WHOLESECTION

Debug Control
@PARSEONLY

INI File Management
@WHOLESECTION

Miscellaneous
@MULTIPLE
@NOWAIT
@OPEN
@ROWS
@SAVE
@SINGLE
@SORTED
@STACK
@TILE
@UNSORTED
@WAIT

Floating Point Constants

Here are some floating point constants and their values as defined in WIL.

@AMC
Atomic Mass Constant
1.66043E-27

@AVOGADRO
Avogadro's Constant

 6.02252E23

@BOLTZMANN
Boltzmann Entropy Constant
1.38054E-23

@DEG2RAD
Degrees to Radians Conversion Constant
0.017453292519943

@e
Base of natural or Napierian logarithms
2.718281828459045

@ELECTRIC
Electric Field Constant
8.8541853E-12

@EULERS
Eulers's Constant
0.5772156649015338

@FARADAY
Faraday Constant
9.64870E4

@GFTSEC

Gravitational Acceleration feet/sec2
32.174

@GMTSEC
Gravitational Acceleration meters/sec2
9.80665

@GOLDENRATIO
Goldenratio
1.6180339887498948

@GRAVITATION
Gravity Constant
6.670E-11

@LIGHTMPS
Lightmps Light miles/sec
186272

@LIGHTMTPS
Lightmtps    meters/sec

 2.997925E8

@MAGFIELD
Magnetic Field Constant
1.256637

@PARSEC
Parsec in AU
206.265

@PI
Pi
3.141592653589793

@PLANCKERGS
Planck's Constant in Ergs
6.6252E-27

@PLANCKJOULES
Planck's Constant in joules
6.6256E-34

@RAD2DEG
Radians to Degrees Conversion Constant
57.29577951308232

String Constants

@CRLF
0x13,0x10      cr,lf

@CR
0x13, cr

@LF
0x10, lf

@TAB
0x09      tab

@LBUTTON
left button

@RBUTTON
right button

@MBUTTON
middle button

@LCLICK
left click

@RCLICK
right click

@MCLICK
middle click

@LDBLCLICK
left double-click

@RDBLCLICK
right double-click

@MDBLCLICK
middle double-click

APPENDIX B    Errors
If the current error mode is @CANCEL (the default), any WIL errors encountered while processing a WIL
program cause the item to be canceled with an error message.

Minor Errors

Moderate Errors

Fatal Errors

Minor Errors
Minor errors are ignored if the current error mode has been set to @OFF.    If the error mode is @NOTIFY
the user has the option of continuing with the WIL program or canceling it.

      1002    File List Processing - No Match   
      1003    FileMove: Failed   
      1004    FileMove: FROM file open failed   
      1005    FileMove: TO file open failed   
      1006    FileMove: I/O error   
      1007    FileMove: Could not delete FROM file   
      1008    FileCopy: Failed   
      1009    FileCopy: FROM file open failed   
      1010    FileCopy: TO file open failed   
      1011    FileCopy:    I/O error   
      1012    FileAppend: FROM file open failed   
      1013    FileAppend: TO file open failed   
      1014    FileAppend: I/O error   
      1015    FileRename: Failed   
      1016    FileDelete: File not found   
      1017    TimeDiff: Time parameter error - bad value   
      1018    TimeDiff: Out of Range (over 60 years)   
      1019    TimeAdd: Cannot add supplied times   
      1020    TimeAdd: Time parameter error - bad value   
      1021    WaitLong: Could not properly compute time for delay   
      1022    WaitUntil: Passed time not in proper format   
      1025    File Rename: Rename failed   
      1028    LogDisk: Requested drive not online   
      1029    DirMake: Dir not created   
      1030    DirRemove: Dir not removed   
      1031    DirChange: Dir not found/changed   
      1034    Clipboard owned by another app.    Cannot open.   
      1035    Clipboard does not contain text for CLIPAPPEND.   
      1036    Clipboard cannot hold that much text (>64000 bytes)   
      1037    Unable to get memory for clipboard.    Close some apps   
      1039    WinClose: Window not found   
      1040    WinHide: Window not found   
      1041    WinIconize: Window not found   

      1042    WinZoom: Window not found   
      1043    WinShow: Window not found   
      1044    WinPlace: Window not found   
      1045    WinActivate: Window not found   
      1077    FileOpen: Open failed   
      1083    FileAttrGet: File not found   
      1086    FileAttrSet: File not found or access denied   
      1100    StrIndex/StrScan 3rd parameter out of bounds   
      1119    WinPosition: Window not found   
      1121    WinTitle: Window not found   
      1125    FileTimeGet: File not found   
      1126    BinaryAlloc: Could not allocate binary buffer   
      1128    FileTimeTouch: File not found   
      1129    OleInitiate: Initiate Failed   
      1133    OleExecute: Could not process OLE command   
      1134    OleExecute: Function syntax error   
      1141    OleExecute:    Not enough format ids for all parameters   
      1143    OleExecute: Format id problem   
      1144    DDETerminate: Channel not open   
      1150    DDEExec: DDE Post failed   
      1155    DDEReq: DDE Post failed   
      1158    RegOpenKey: Function Failed   
      1159    RegCreateKey: Function Failed   
      1163    DDEPoke: DDE Post failed   
      1164    DDEPoke: DDE Timeout   
      1165    DDEReq: DDE Timeout   
      1166    DDEExec: DDE Timeout   
      1172    WinExeName: Window not found   
      1173    Net: No network found   
      1174    Net: Security Violation   
      1175    Net: Function not supported   
      1176    Net: Out of Memory   
      1177    Net: Network Error   
      1178    Net: Windows function failed   
      1179    Net: Invalid type of request   
      1180    Net: Invalid Pointer   
      1181    Net: Cancelled at users request   

      1182    Net: Bad user / Not logged in   
      1183    Net: Buffer too small - Internal Error   
      1184    Net: Invalid Network name   
      1185    Net: Invalid Local Name   
      1186    Net: Invalid Password   
      1187    Net: Local Device already connected   
      1188    Net: Not a valid local device or network name   
      1189    Net: Not a redirected local device or current net name   
      1190    Net: Files were open with FORCE=FALSE   
      1191    Net: Function busy   
      1192    Net: Unknown network error   
      1193    Function not supported in this version of Windows   
      1194    PlaySounds: File not found   
      1195    PlayMedia: Unrecognised Error   
      1200    WinPlaceGet/Set: Window not found   
      1201    WinPlaceGet/Set: Function failed   
      1207    SnapShot: Out of memory   
      1208    SnapShot: Palette Creation Error   
      1209    SnapShot: Cannot open clipboard   
      1213    Cmd Extender: Minor error occurred   
      1216    RunWait Commands not supported in 3.0 Debug Windows   
      1217    WinHelp: Invalid SubCommand Requested   
      1226    DirExist: Invalid path specified   
      1227    WinIsDos: Window not found or bad window   
      1229    RegDeleteKey: Function Failed   
      1230    RegDeleteKey: Access Denied   
      1231    RegCloseKey: Function Failed   
      1232    RegSetValue: Function Failed   
      1233    RegQueryValue: Function Failed   
      1240    ExeTypeInfo/RunEnviron: Cannot Locate File   
      1241    RunEnviron: Not a Windows EXE file   
      1242    EnvironSet: Not enough environment space left.   
      1248    Ole:System Ole Dll's not found (not installed?)   
      1249    Ole Object: Could not process value returned from object   
      1251    Ole: WIL Ole interface Dll not found (WBOLExxx.DLL)   
      1253    Function not supported on this platform.   
      1254    Ole: Unknown interface   

      1255    Ole: Member not found   
      1256    Ole: Param not found   
      1257    Ole: Type mismatch   
      1258    Ole: Unknown name   
      1259    Ole: No named args   
      1260    Ole: Bad variable type   
      1261    Ole: Exception   
      1262    Ole: Overflow   
      1263    Ole: Bad index   
      1264    Ole: Unknown LCID   
      1265    Ole: Array is locked   
      1266    Ole: Bad param count   
      1267    Ole: Param not optional   
      1268    Ole: Bad callee   
      1269    Ole: Not a collection   
      1270    Ole: IO error   
      1271    Ole: Compile error   
      1272    Ole: Cannot create tempfile   
      1273    Ole: Illegal index   
      1274    Ole: Id not found   
      1275    Ole: Buffer too small   
      1276    Ole: Read only   
      1277    Ole: Invalid data read   
      1278    Ole: Unsupported format   
      1279    Ole: Already contains name   
      1280    Ole: No matching arity   
      1281    Ole: Registry access problem   
      1282    Ole: Lib not registered   
      1283    Ole: Duplicate definition   
      1284    Ole: Usage   
      1285    Ole: Dest not known   
      1286    Ole: Undefined type   
      1287    Ole: Qualified name disallowed   
      1288    Ole: Invalid state   
      1289    Ole: Wrong type kind   
      1290    Ole: Element not found   
      1291    Ole: Ambiguous name   

      1292    Ole: Invoke function mismatch   
      1293    Ole: DLL function not found   
      1294    Ole: Bad module kind   
      1295    Ole: Wrong platform   
      1296    Ole: Already being laidout   
      1297    Ole: Cannot load library   
      1298    Ole: Error code not recognised   
      1299    Dll: DLL file not found   
      1300    Dll: File not loadable   
      1301    DllCall: Bad Entrypoint name   
      1302    DllCall: Bad Global Pointer returned from called DLL   
      1303    IconReplace: EXE file not found   
      1304    IconReplace: ICO file not found   
      1305    IconReplace: ICO file open failed   
      1306    IconReplace: Invalid ICO file   
      1307    IconReplace: Memory Alloc Error   
      1308    IconReplace: EXE file open failed (in use?)   
      1309    IconReplace: Unrecognised EXE file   
      1310    IconReplace: Not a Windows EXE file   
      1311    IconReplace: No resources in EXE file   
      1312    IconReplace: New Icon is larger than old icon   
      1313    IconReplace: Invalid EXE file   
      1314    IconReplace: No icons found in EXE file   
      1315    SendMenusTo: Window menu not accessable   
      1316    SendMenusTo: MenuItem name not found   
      1317    SendMenusTo: PostMessage Failed   
      1318    Ole: WBOLExxx.DLL LoadLibrary failure   
      1319    OS2Sound: Could not communicate with OS2   
      1323    FileFullName: Filename cannot be legally expanded   
      1324    FileMapName: Filename cannot be legally mapped to mask   
      1330    BinaryRead: File size larger than binary buffer size   
      1334    WinItemChild: Parent Window cannot be found   
      1335    IniPrivate functions:    Illegal to access [386Enh] Device= keywords   
      1336    Ask Multiple:    More than 99 items selected.    Too Many.   
      1337    AskFileName: Dialog Box creation error   
      1341    FP Math: Argument to function outside domain of function   
      1342    FP Math: Result is too large to be represented   

      1343    FP Math: Partial loss of significance occurred   
      1344    FP Math: Illegal value passed to function. (Singularity)   
      1345    FP Math: Total loss of significance occurred   
      1346    FP Math: Result too small to be represented   
      1347    FP Math: Undocumented library error passed to matherr   
      1348    FP Math: Non-Integer Power of Negative Number is not defined   
      1349    FP Math: Square Root of a Negative Number   
      1350    FP Math: Cannot Take Log of Zero or a Negative Number   
      1351    FP Math: Fact args must be positive whole numbers <=170   
      1368    ActivateChild: Child windows does not exist   
      1369    DllCall: Invalid DllName as Param1   
      1370    DllCall: Invalid DllEntryPoint   
      1371    DllCall: Bad punctuation found   
      1372    DllCall: Too many parameters (max 2 + 15 args)   
      1373    DllCall: Must have at least 3 parameters   
      1374    DllCall: Number of DLL parameters and type string do not agree   
      1375    DllCall: Parameter cannot be forced to 'SHORT'     
      1376    DllCall: Parameter cannot be forced to 'LONG'   
      1377    DllCall: Return type invalid - WORD LONG or LPSTR   
      1378    DllCall: Bad parm code.    Only WORD, LONG, LPSTR, LPBINARY or LPNULL   
      1379    DllCall: Bad type list caused stack problems.    Check types carefully.   
      1380    DllCall: Missing ':' after type code   
      1381    DllCall: Param cannot be converted to string for LPSTR   
      1388    Request Ignored:    NT Security violation   
      1389    FileCompare: FileOpen failure - First File     
      1390    FileCompare: FileOpen failure - Second File     
      1404    FileCopy: Insufficient free space on target drive
      1405    FileMove: Insufficient free space on target drive
      1406    FileAppend: Insufficient free space on target drive   
      1407    IntControl 29:    Invalid delimiter character
      1408    "WinIdGet: Window not found"
      1409    "Shortcut functions require Windows 95"
      1410    "Shortcut functions: Shortcut files must have an extension of '.LNK'"
      1411    "Shortcut functions: Shortcut file not found"
      1412    "ShortcutMake: Shortcut file already exists"
      1413    "Shortcut Make/Edit: Invalid show mode"
      1414    "ShortcutExtra: Invalid hotkey"

      1415    "Shortcut functions: CoInitialize failed"
      1416    "Shortcut functions: CoCreateInstance failed"
      1417    "Shortcut functions: QueryInterface failed"
      1418    "Shortcut functions: Error loading shortcut file"
      1419    "Shortcut functions: Error reading shortcut file"
      1420    "Shortcut functions: Error saving shortcut file"
      1421    "DirAttrGet: Directory not found"
      1422    "DirAttrSet: Directory not found or access denied"
      1423    "FileNameLong: File not found"
      1424    "FileNameShort: File not found"
      1425    "WIL Internal Error"
      1426    "IntControl 30: Source file not found"
      1427    "IntControl 30: Error parsing target spec"
      1428    "IntControl 30: Cannot move file to a different drive"
      1429    "RegApp: Function not supported in 16-bit version"
      1430    "RegApp: File not found"
      1431    "RegApp: Error writing to registry"
      1432    "RegDelValue: Function not supported in 16-bit version"
      1433    "InstallFile: Function not supported in 16-bit version"
      1434    "InstallFile: Source file not found (or not specified)"
      1435    "InstallFile: Target file name cannot contain a path"
      1436    "InstallFile: Target directory not found (or not specified)"
      1438,    "WinSysInfo: Function not supported in 16-bit version"
      1439,    "Mouse Functions: Invalid click-type"
      1440,    "Mouse Functions: Unable to determine window containing mouse"
      1441,    "Mouse Functions: Child window specified with no parent"
      1442,    "Mouse Functions: Parent window not found"
      1443,    "Mouse Functions: Child window not found"
      1444,    "MouseClickBtn: Button not found"
      1445, "IconReplace: Unable to create file mapping"
      1446, "IconReplace: Unable to map view of file"
      1447, "IconReplace: New icon is smaller than old icon"
      1448, "IntControl 32: Invalid data type"
      1449, "ShellExecute: Error launching specified file"
      1450, "RegQueryItem: Function not supported in 16-bit version"
      1451, "RegQueryItem: Unable to open specified subkey"
      1452, "REG Functions: Unable to open (or create) specified subkey"

      1453, "RegQueryValue: Binary data found.    Use RegQueryBin instead."
      1454, "RegQueryBin: Data is not binary"
      1455, "RegQueryBin: Unable to allocate or lock memory"
      1456, "RegQueryDword: Data is not a DWORD"
      1457, "RegSetBin: Invalid binary value string"
      1458, "RegSetBin: Binary value string too long"
      1459, "RegSetDword: Invalid DWORD value"
      1460, "REG functions: Subkey string too long"
      1461, "TimeJulToYmd: Invalid Julian date"
      1462, "TimeSubtract: Cannot subtract supplied times"
      1463, "TimeSubtract: Time parameter error - bad value"
      1464, "IntControl 36: Window not found"
      1465, "IgnoreInput: Function not supported in 32-bit version"

Moderate Errors
If the error mode is @NOTIFY or @OFF, the user has the option of continuing with the WIL program or
canceling it.

      2001    SendKey: Illegal Parameters   
      2038    WinCloseNot Function Syntax error   
      2058    StrCat: Function syntax error   
      2060    AVERAGE function syntax error   
      2093    Dialog Box: Bad Filespec, using *.*   
      2106    SetDisplay: Type not NAME, DATE, SIZE, KIND or UNSORTED   
      2112    FileSize: File Not Found   
      2118    FileCopy/Move: Destination file same as source   
      2120    SetDisplay: Display type not SHORT or LONG   
      2122    FileAppend: Target cannot be wildcarded   
      2203    Dir Rename: 'From' file illegal   
      2204    Dir Rename: 'To' file illegal   
      2214    Cmd Extender: Moderate Error Occurred   
      2331    BinaryStrGet: Data request extends beyond end of binary buffer   
      2332    BinaryStrSet: Data to store would overrun binary buffer
      2392    DllLoad: Too many open DllLoads

Fatal Errors
Fatal errors cause the current WIL program to be canceled with an error message, regardless of the error
mode in effect.    (We show the error codes here for consistency, but in practice you will never be able to
call LastError after a fatal error).

      3023    BinaryData: Invalid Binary Data handle passed   
      3024    BinaryData: Too many open Binary Data Handles   
      3026    LogDisk: Illegal disk drive   
      3027    LogDisk: DOS reports no disks!!    ???   
      3032    GoTo unable to lock memory for batch file   
      3033    GoTo label not found   
      3046    Internal Error 3046. Function not defined   
      3047    Variable name over 30 chars. Too Long   
      3048    Substitution %Variable% not followed by a % (Use %% for %)   
      3049    No variables exist??!!   
      3050    No IF to relate to THEN or ELSE is currently valid   
      3051    Undefined variable or function   
      3052    Uninitialized variable or undefined function   
      3053    Character string too long (>256 chars??)   
      3054    Unrecognizable item found on line   
      3055    Variable name over 30 chars. Too Long   
      3056    Variable could not be converted to string   
      3057    Variable could not be converted to a valid number   
      3059    Illegal Bounds for STRSUB function   
      3061    Illegal Syntax   
      3062    Attempt to divide by zero   
      3063    Binary operation not legal for type of number   
      3064    Unary operation not legal for type of number   
      3065    Unbalanced Parenthesis   
      3066    Wrong Number of Arguments in Function   
      3067    Function Syntax. Opening parenthesis missing.   
      3068    Function Syntax. Illegal delimiter found.   
      3069    Bad assignment statement. (Use == for equality testing)   
      3070    Internal error 3070.    Too many arguments defined.   
      3071    Missing or incomplete statement   
      3072    THEN not found in IF statement   
      3073    Goto Label not specified   

      3074    Expression continues past expected end.   
      3075    Call: Parse of file/parameter line failed   
      3076    FileOpen: READ or WRITE not properly specified   
      3078    FileOpen: Too many (>5) files open   
      3079    FileClose: Invalid file handle   
      3080    FileClose: File not currently open   
      3081    FileRead: Invalid file handle   
      3082    FileRead: File not currently open   
      3084    FileWrite: Invalid file handle   
      3085    FileWrite: File not currently open   
      3087    FileRead:    File not open for reading   
      3088    FileRead: Attempt to read past end of file   
      3089    FileWrite: File not open for writing   
      3090    Dialog Box: File open error   
      3091    Dialog Box: Box too large (20x60 max)   
      3092    Dialog Box: Non-text control used w/filebox.   
      3094    Dialog Box: Window Registration Failed   
      3095    Compare: Not an integer or string compare   
      3096    Memory allocation failure.    Out of memory for strings   
      3097    Memory allocation failure.    Out of memory for variables   
      3098    IntErr: NULL pointer passed to xstrxxx subroutines   
      3099    CallExt function disabled.    Not currently available.   
      3101    Substituted line too long. (> 256 characters)   
      3102    Drop: Can only drop variables   
      3103    IsDefined: Attempting to test non-variable item   
      3104    Dialog Box: Window Creation Failed   
      3105    CALL and CALLEXT not supported in compiled versions   
      3107    Run:    Filetype is not COM, EXE, PIF or BAT   
      3108    FileItemize: Unable to lock file info segment   
      3109    FileItemize: Unable to unlock file info segment   
      3110    FileItemize: Unable to lock file index segment   
      3111    FileItemize: Unable to unlock file index segment   
      3113    FileSize: Filelength I/O Error   
      3114    FileSize: Buffer Overrun Error   
      3115    FileDelete: Buffer Overrun Error   
      3116    FileRename: Buffer Overrun Error   
      3117    FileCopy/Move: Buffer Overrun Error   

      3123    WaitForKey: Invalid key codes specified   
      3124    WinMetrics: Invalid code   
      3127    BinaryEODSet: Set value beyond end of buffer   
      3130    OleTerminate: Bad Ole Channel   
      3131    OleExecute: Bad Ole Channel   
      3132    Ole: Ole has not been initialized   
      3135    OleExecute: Syntax Error - Needs more parameters   
      3136    DDEInitiate: Undefined Error   
      3137    DDEInitiate: Nobody Around to talk to   
      3138    DDEInitiate: Too many DDE conversations   
      3139    DDEInitiate: Bad Channel Number   
      3140    DDEInitiate: Create String Failure   
      3142    DDETerminate: Channel does not exist   
      3145    DDEExec: GlobalAlloc failed   
      3146    DDEExec: Global Lock failed   
      3147    DDEExec: Bad channel number   
      3148    OleInitiate: Application does not support Ole   
      3149    DDEExec: Internal Error 3149   
      3151    DDEReq: Undefined Error   
      3152    DDEReq: Bad channel number   
      3153    DDEReq: Null handle returned   
      3154    DDEReq: Create String Failed   
      3156    DDEReq: GlobalLock failed   
      3157    OleInitiate: Too many open channels   
      3160    DDEPoke: GlobalAlloc failed   
      3161    DDEPoke: GlobalAddAtom failed   
      3162    DDEPoke: GlobalLock failed   
      3167    DDE Recv Data: GlobalLock 1 failed   
      3168    DDE Recv Data: GlobalAlloc 2 failed   
      3169    DDE Recv Data: GlobalLock 2 failed   
      3170    DDEInitiate: Internal Error 3170   
      3171    IntControl: Invalid IntControl opcode   
      3196    PlayMedia: Do not use WAIT or NOTIFY in MCI string   
      3197    WinResources: Invalid request number   
      3198    WinParmGet/Set: Invalid request number   
      3199    WinPlaceGet/Set: Invalid window-size number   
      3202    WinPlaceSet: Wrong number of window co-ordinates   

      3205    MouseInfo: Invalid request number   
      3206    SnapShot: Invalid request number   
      3210    Cmd Extender: Out of memory to save result   
      3211    Call:    More than 6 levels of Calls   
      3212    PlayMedia: Notify Window creation failed   
      3215    Cmd Extender: Severe error occurred   
      3218    Dialog: Dialog name too long (>16 chars)   
      3219    Dialog: Format variable missing   
      3220    Dialog: Format version not supported   
      3221    Dialog: x, y, width or height variables bad   
      3222    Dialog: Control definition variable missing   
      3223    Dialog: Bad Control type in definition variable   
      3224    Dialog: Bad or missing Value for Radio/Checkbox button   
      3225    Dialog: Too many items in definition variable   
      3228    Function not available in Windows NT   
      3234    RunExit: Not EXE, COM or BAT file   
      3235    RunExit: EXE name too long (max 127)   
      3236    RunExit: Params too long (max 126)   
      3237    RunEnviron: Params too long (max 119)   
      3238    RunEnviron: EXE file NOT a Windows file   
      3239    RunExit: Cannot locate file to run   
      3243    Ole Object: Object Name too long   
      3244    Ole Object: Property name too long   
      3245    Ole Object: Method name too long   
      3246    Ole Object: Object does not exist   
      3247    Ole Object: Method has more parameters then WIL supports   
      3250    Ole Object: Problem occurred when formatting parameters   
      3252    RunExit: Not supported under Windows NT (No DOS)   
      3320    EvalDisk: Disk Drive specification error   
      3321    EvalDisk: Internal Error 1   
      3322    File Name Parsing:    Function does not allow wildcards   
      3325    BinaryPeekPoke: Offset is beyond end of binary buffer   
      3326    BinaryPoke: Value to poke is outside the 8 bit range   
      3327    BinaryCopy: Offset(s) beyond end of binary buffer(s)   
      3328    BinaryCopy: Data to be copied will not fit in buffer   
      3329    BinaryCopy: Data to copy extends beyond end of buffer   
      3333    BinaryIndex: Offset is beyond end of binary buffer   

      3338    FP Math: Illegal floating point number.    Too many dots.   
      3339    FP Math: Illegal floating point number.    Too many E's.   
      3340    FP Math: Variable could not be converted to floating point   
      3352    Internal Error: Command or Structop not defined   
      3353    Struct Error:    Nesting of structures is too complex   
      3354    END Error:    No matching End found   
      3355    STRUCT Error:    'Break' not in a Structure   
      3356    STRUCT Error:    'Continue' not in a Structure     
      3357    End Error: No match    found   
      3358    Else Error: No matching If found   
      3359    Break/Continue:    Not in a While, Switch, or For structure   
      3360    For Error:    Bad Syntax.    e.g. 'For x = 1 to 10'   
      3361    For Error:    For counters must be numbers, not strings   
      3362    Misplaced 'TO' found without a DoFor     
      3363    Unidentified 'END': Must be followed by If, While, Switch or For   
      3364    SWITCH/CASE Error: Switch/Case can only accept integers   
      3365    CASE Error:    No matching Switch found   
      3366    AskBox Error:    Single/Multiple value incorrect   
      3367    AskBox Error: Sorted/Unsorted value incorrect   
      3382    DllCall: Internal Error - cannot accept lpbinary return   
      3383    Execute function error: 'Wait' parameter bad   
      3384    Execute function error: 'Display type' parameter bad   
      3385    DiskExist: Invalid Disk Argument.    Try a single letter   
      3386    IniItemize: Null section name not valid in NT   
      3387    ShellPrint: @WAIT not supported in NT   
      3391    DllFree: Bad Dll handle passed.    Must use handle returned by DllLoad   
      3393    AddExtender:    Too many extenders added   
      3394    AddExtender:    Extender dll not found   
      3395    AddExtender:    Not a valid extender   
      3396    AddExtender:    Extender table full   
      3437, "AddExtender: Extender DLL load failed (make sure 16/32-bit type matches WIL)"

QUICK FUNCTION/SYNTAX REFERENCE

About(   )
Displays the About message box.

Abs(integer)
Returns the absolute value of a number.

Acos(fp_num)
Calculates the arccosine.

AddExtender(dllfilename)
Installs a WIL extender Dll.

AppExist(program-name)
Tells if an application is running.

AppWaitClose(program-name)
Suspends WIL program execution until a specified application has been closed.

Asin(fp_num)
Calculates the arcsine.

AskFileName(title, directory, filetypes, default filename, flag)
Returns the filename as selected by a FileOpen dialog box.

AskFileText(title, filename, sort mode, select mode)
Allows the user to choose an item from a list box initialized with data from a file.

AskItemList(title, list, delimiter, sort mode, select mode)
Allows the user to choose an item from a list box initialized with a list variable.

AskLine(title, prompt, default answer)
Lets the user enter a line of information.

AskPassword(title, prompt)
Prompts the user for a password.

AskYesNo(title, question)
Lets the user choose from Yes, No, or Cancel.

Atan(fp_num)
Calculates the arc tangent.

Average(number [,number...])   
Returns the average of a list of numbers.

Beep
Beeps at the user.

Binary Operations
BinaryAlloc(buffsize)

Allocates a memory buffer of the desired size.

BinaryCopy(handle targ, offset targ, handle src, offset src, bytecount)
Copies bytes of data from one binary buffer to another.

BinaryEodGet(handle)
Returns the offset of the free byte just after the last byte of stored data.

BinaryEodSet(handle, offset)
Sets the EOD value of a buffer.

BinaryFree(handle)
Frees a buffer previously allocated with Binary Alloc.

BinaryIndex(handle, offset, search string, direction)
Searches a buffer for a string.

BinaryIndexNC(handle, offset, string, direction)

Searches a buffer for a string. (case insensitive)

BinaryPeek(handle, offset)
Returns the value of a byte from a binary buffer.

BinaryPeekStr(handle, offset, maxsize)
Extracts a string from a binary buffer.

BinaryPoke(handle, offset, value)
Pokes a new value into a binary buffer at offset.

BinaryPokeStr(handle, offset, string)
Writes a string into a binary buffer.

BinaryRead(handle, filename)
Reads a file into a binary buffer.

BinaryStrCnt(handle, start-offset, end-offset, string)
Counts the occurrences of a string in some or all of a binary buffer.

BinaryWrite(handle, filename)
Writes a binary buffer to a file.

Break
Used to exit a conditional flow control statement.

ButtonNames(Ok-name, Cancel-name)
Changes the names of the buttons which appear in WIL dialogs.

Call(WIL filename, parameters)
Calls a WIL batch file as a subroutine.

Ceiling(fp_num)
Calculates the ceiling of a value.

Char2Num(string)
Returns the ANSI code of a string's first character.

ClipAppend(string)
Appends a string to the end of the Clipboard.

ClipGet(   )
Returns the Clipboard contents into a string.

ClipPut(string)
Replaces the Clipboard contents with a string.

Continue
Transfers control to the beginning of a For or While loop or to a different case statement.

Cos(fp_num)
Calculates the cosine.

Cosh(fp_num)
Calculates the hyperbolic cosine.

CurrentFile {*M}()

Returns the filename of the selected item.

CurrFilePath {*M}()

Returns the path and full filename of the selected item.

CurrentPath {*M}()

Returns the path of the selected item.

DateTime
Provides the current date and time.

DDEExecute(channel, [commandstring])
Sends commands to a DDE server application.

DDEInitiate(app name, topic name)
Opens a DDE channel.

DDEPoke(channel, item name, item value)
Sends data to a DDE server application.

DDERequest(channel, item name)
Gets data from a DDE server application.

DDETerminate(channel)
Closes a DDE channel.

DDETimeout(value in seconds)
Sets the DDE time-out value.

Debug(mode)
Turns the Debug mode on or off.

DebugData(string, string)
Writes data via the Windows OutputDebugString function to the default destination.

Decimals(#digits)

Sets the number of decimal points used with floating point numbers.

Dialog(dialog-name)
Displays a user-defined dialog box.

DirAttrGet([d:]path)
Gets directory attributes.

DirAttrSet(dir-list, settings)
Sets directory attributes.

DirChange([d:]path)
Changes the current directory.

DirExist(pathname)
Determines if a directory exists.

DirGet(   )
Returns the current directory path.

DirHome(   )
Returns the initial directory path.

DirItemize(dir-list)
Builds a list of directories.

DirMake([d:]path)
Creates a new directory.

DirRemove(dir-list)
Removes an existing directory.

DirRename([d:]oldpath, [d:]newpath)
Renames a directory.

DirWindows(request#)
Returns the name of the Windows or Windows System directory.

DiskExist(drive letter)
Tests for the existence of a drive.

DiskFree(drive-list)
Returns the amount of free space on a set of drives.

DiskScan(request#)
Returns a list of drives.

Display(seconds, title, text)
Momentarily displays a string.

DllCall(dllfilename/dllhandle, returntype:entrypoint [,paramtype:param...])
Calls an external Dll.

DllCall     Additional     information
DllFree(dllhandle)

Frees a Dll that was loaded via the DllLoad function.

DllHinst(partial-winname)
Obtains an application instance handle for use in DllCall's when required.

DllHwnd(partial-winname)
Obtains a window handle for use in DllCall's when required.

DllLoad(dllname)
Loads a Dll for later use via the DllCall function.

DOSVersion(level)
Returns the version numbers of the current version of DOS.

Drop(varname [,varname...])
Deletes variables to recover their memory.

EndSession(   )
Ends the current Windows session.

Environment(env-variable)
Gets a DOS environment variable.

EnvironSet(env-varname, newvalue)
Changes LOCAL Environment variables.

EnvItemize(   )
Returns a delimited list of the current environment.

ErrorMode(mode)
Sets what happens in the event of an error.

Exclusive(mode)
Controls whether or not other Windows programs will get any time to execute.

Executestatement
Directly executes a WIL statement.

ExeTypeInfo(exefilename)
Returns an integer describing the type of EXE file specified.

Exit
Unconditionally ends a WIL program.

Exp(fp_num)
Calculates the exponential.

Fabs(fp_num)
Calculates the absolute value of a floating-point argument.

FileAppend(source-list, destination)
Appends one or more files to another file.

FileAttrGet(filename)
Returns file attributes.

FileAttrSet(file-list, settings)
Sets file attributes.

FileClose(filehandle)
Closes a file.

FileCompare(filename1, filename2)
Compares two files.

FileCopy(source-list, destination, warning)
Copies files.

FileDelete(file-list)
Deletes files.

FileExist(filename)
Test for the existence of files.

FileExtension(filename)
Returns the extension of a file.

FileFullName(partial filename)
Returns a file name with drive and path information.

FileItemize(file-list)
Builds a list of files.

FileLocate(filename)
Finds a file within the current DOS path.

FileMapName(filename, mapping-data)
Transforms a filename with a file wild-card mask and returns a new filename.

FileMove(source-list, destination, warning)
Moves files to another set of path names.

FileNameLong {*32}(filename)
Returns the long version of a filename.

FileNameShort {*32}(filename)
Returns the short (ie, 8.3) version of a filename.

FileOpen(filename, mode)
Opens a STANDARD ASCII (only) file for reading or writing.

FilePath(filename)
Returns path of a file.

FileRead(filehandle)
Reads data from a file.

FileRename(source-list, destination)
Renames files to another set of names.

FileRoot(filename)

Returns root of a file.

FileSize(file-list)
Adds up the total size of a set of files.

FileTimeCode(filename)
Returns a machine readable/computable code for a file time.

FileTimeGet(filename)
Returns file date and time.

FileTimeSet(list, ymdhms)
Sets the date and time of one or more files.

FileTimeTouch(file-list)
Sets file(s) to current time.

FileWrite(handle, output-data)
Writes data to a file.

FileYmdHms(filename)
Returns a file time in the YmdHms date/time format.

Floor(fp_num)
Calculates the floor of a value.

For    varname = initial value to final value [by increment]
Controls the looping of a block of code base in an incrementing index.

GetExactTime(   )
Returns the current time in hundredths of a second.

GetTickCount(   )
Returns the number of clock ticks used by Windows since Windows started.

GoSub
Transfers control of WIL processing while saving location of the next statement.

Gotolabel
Changes the flow of control in a WIL program.

IconArrange(   )
Rearranges icons.

IconReplace(filename, iconfilename)
Replaces an existing icon with a new icon.

If ... Else ... Endifexpression
Conditionally performs a function.

IgnoreInput(mode)
Turns off hardware input to windows.

IniDelete(section, keyname)
Removes a line or section from WIN.INI.

IniDeletePvt(section, keyname, filename)
Removes a line or section from a private INI file.

IniItemize(section)
Lists keywords or sections in WIN.INI file.

IniItemizePvt(section, filename)
List keywords or sections in a private INI file.

IniRead(section, keyname, default)
Reads a string from the WIN.INI file.

IniReadPvt(section, keyname, default, filename)
Reads a string from a private INI file.

IniWrite(section, keyname, data)
Writes a string to the WIN.INI file.

IniWritePvt(section, keyname, data, filename)
Writes a string to a private INI file.

InstallFile(filename, targname, default-targdir, delete-old, flags)
Installs a file.

Int(string/fp_num)
Converts a floating point number or a string to an integer.

IntControl(request#, p1, p2, p3, p4)
Special function which permits an internal operation.

IsDefined(variable name)
Determines if a variable name is currently defined.

IsFloat(value)
Tests whether a number can be converted to a floating point number.

IsInt(string)
Tests whether a number can be converted into a valid number.

IsKeyDown(keycode)
Determines if the Shift key or the Ctrl key is currently down.

IsLicensed(   )
Tells if the calling application is licensed.

IsMenuChecked {*M}(menuname)
Determines if a menu item has a check mark next to it.

IsMenuEnabled {*M}(menuname)
Determines if a menu item has been enabled.

IsNumber(value)
Determines if a string represents a valid number.

ItemCount(list, delimiter)

Returns the number of items in a list.

ItemExtract(index, list, delimiter)
Returns the selected item from a list.

ItemInsert(item, index, list, delimiter)
Adds an item to a list.

ItemLocate(item, list, delimiter)
Returns the position of an item in a list.

ItemRemove(index, list, delimiter)
Removes an item from a list.

ItemSelect
Allows the user to choose an item from a list box.

ItemSort(list, delimiter)
Sorts a list.

KeyToggleGet(@key)
Returns the status of a toggle key.

KeyToggleSet(@key, value)
Sets the state of a toggle key and returns the previous value.

LastError(   )
Returns the last error encountered.

Log10(fp_num)
Calculates the base-10 logarithm.

LogDisk(drive letter)
Logs (activates) a disk drive.

LogE(fp_num)
Calculates the natural logarithm.

Max(number [,number...])
Determines the highest number in a list.

MenuChange {*M}(menuname, flags)
Checks, unchecks, enables, or disables a menu item.

Message(title, text)
Displays text in a message box.

Min(number [,number...])
Determines the lowest number in a list.

MouseClick(click-type, modifiers)
Clicks mouse button(s).

MouseClickBtn(parent-windowname, child-windowname, button-text)
Clicks on the specified button control.

MouseInfo(request#)
Returns assorted mouse information.

MouseMove(X, Y, parent-windowname, child-windowname)
Moves the mouse to the specified X-Y coordinates.

MsgTextGet(window-name)
Returns the contents of a Windows message box.

Net101
NetInfo(requestcode)

Determines network(s) installed.

Num2Char(integer)
Converts a number to its character equivalent.

Object101, Ole 2.0, and Applications
ObjectClose(objecthandle)

Closes OLE 2.0 automation object.

ObjectOpen(objectname)
Opens or creates an OLE 2.0 automation object.

ParseData(string)
Parses a passed string.

Pause(title, text)
Displays Text in a message box.

PlayMedia(command-string)
Controls multimedia devices.

PlayMidi(filename, mode)
Plays a MID or RMI sound file.

PlayWaveForm(filename, mode)
Plays a WAV sound file.

Print(data file, directory, display mode, waitflag)
Instructs an application associated to a file to print the file on the default printer.

Random(integer)
Generates a positive random number.

Registration Database Operations
RegApp {*32}(program-name, path)

Creates registry entries for a program under "App Paths".

RegCloseKey(keyhandle)

Closes a key to the registration database.

RegCreateKey(keyhandle, sub-key string)
Returns a handle to a new registration database key.

RegDeleteKey(keyhandle, sub-key string)
Deletes a key and data items associated with the key.

RegDelValue {*32}(handle, subkey-string)
Deletes a named value data item for the specified subkey from the registry.

RegOpenKey(keyhandle, sub-key string)
Returns a handle to an existing registration database key.

RegQueryBin {*32}(handle, subkey-string)
Returns binary value at subkey position.

RegQueryDword {*32}(handle, subkey-string)
Returns DWORD value at subkey position.

RegQueryItem {*32}(handle, subkey-string)
Returns a list of named data items for a subkey.

RegQueryKey(keyhandle, index)
Returns sub keys of the specified key.

RegQueryValue(keyhandle, keyname)
Returns data item string at sub-key position.

RegSetBin {*32} (handle, subkey-string, value)
Sets a binary value in the Registration Database.

RegSetDword {*32} (handle, subkey-string, value)
Sets a DWORD value in the Registration Database.

RegSetValue(keyhandle, sub-key string, value)
Sets the value of a data item in the registration database.

Reload {*M}
Reloads menu file(s).

Return
Returns from a Call to the calling program or from a GoSub :label.

Run(program-name, parameters)
Runs a program as a normal window.

RunEnviron(program-name, parameters, displaymode, waitflag)
Launches a program in the current environment as set with the EnvironSet command.

RunExit(program-name, parameters)
Exits Windows, runs a DOS program or batch file then restarts windows when DOS is finished.

RunHide(program-name, parameters)
Runs a program as a hidden window.

RunHideWait(program-name, parameters)
Runs a program in a hidden window and waits for it to close.

RunIcon(program-name, parameters)
Runs a program as an icon.

RunIconWait(program-name, parameters)
Runs a program as an icon and waits for it to close.

RunShell(program-name, params, directory, displaymode, waitflag)
Runs a program via the Windows ShellExecute Command.

RunWait(program-name, parameters)
Runs a program as a normal window and waits for it to close.

RunZoom(program-name, parameters)
Runs a program in a maximized window.

RunZoomWait(program-name, parameters)
Runs a program in a maximized window and waits for it to close.

Selectvarname
Allows selection among multiple blocks of statements.

SendKey(sendkey-string)
Sends keystrokes to the currently active window.

SendKeysChild(partial-parent-windowname, partial-child-windowname, sendkey-
string)

Sends keystrokes to the active child window.

SendKeysTo(partial-parent-windowname, sendkey-string)
Sends keystrokes to a "windowname".

SendMenusTo(partial-parent-windowname, menuname)
Activates a window and sends a specified menu option.

ShellExecute (program-name, params, directory, display mode, operation)
Runs a program via the Windows ShellExecute command

ShortcutEdit {*95}(link-name, target, params, start-dir, show-mode)
Modifies the specified shortcut file.

ShortcutExtra {*95}(link-name, description, hotkey, icon-file, icon-index)
Sets additional information for the specified shortcut file.

ShortcutInfo {*95}(link-name)
Returns information on the specified shortcut file.

ShortcutMake {*95}(link-name, target, params, start-dir, show-mode)
Creates a Windows 95 shortcut for the specified filename or directory.

Sin(fp_num)
Calculates the sine.

Sinh(fp_num)
Calculates the hyperbolic sine.

SnapShot(request#)
Takes a snapshot of the screen and pastes it to the clipboard.

Sounds(request#)
Turns sounds on or off.

Sqrt(fp_num)
Calculates the square root.

StrCat(string [,string])
Concatenates strings together.

StrCharCount(string)
Counts the number of characters in a string.

StrCmp(string1, string2)
Compares two strings.

StrFill(filler, length)
Builds a string from a repeated smaller string.

StrFix(base-string, pad-string, length)
Pads or truncates a string to a fixed length.

StrFixChars(base-string, pad-string, length)
Pads or truncates a string To a fixed length using characters.

StriCmp(string1, string2)
Compares two strings without regard to case.

StrIndex(string, sub-string, start, direction)
Locates a string within a larger string.

StrLen(string)
Returns the length of a string.

StrLower(string)
Converts a string to all lower-case characters.

StrReplace(string, old, new)
Replaces all occurrences of a sub-string with another.

StrScan(string, delimiters, startpos, direction)
Finds an occurrence of one or more delimiter characters in a string.

StrSub(string, startpos, length)
Returns a sub-string from within a string.

StrTrim(string)
Trims leading and trailing blanks from a string.

StrUpper(string)

Converts a string to all upper-case characters.

Switchvarname
Allows selection among multiple blocks of statements.

Tan(fp_num)
Calculates the tangent.

Tanh(fp_num)
Calculates the hyperbolic tangent.

Terminate(expression, title, message)
Conditionally ends a WIL program.

TextBox(title, filename)

Displays a file in a list box on the screen and returns the selected line.

TextBoxSort(title, filename)

Displays a file in a sorted list box on the screen and returns the selected line.

TextSelect(title, list, delimiter)

Allows the user to choose an item from an unsorted list box.

TimeFunctions
TimeAdd(YmdHms, YmdHms)

Adds two YmdHms variables.

TimeDate(   )
Provides the current date and time in a readable format.

TimeDelay(seconds)
Pauses execution for a specified amount of time.

TimeDiffDays(Ymd[Hms], Ymd[Hms])
Returns the difference in days between the two dates.

TimeDiffSecs(YmdHms, YmdHms)
Returns the time difference in seconds between the two date times.   

TimeJulianDay(Ymd[Hms])
Returns the julian day given a date/time.

TimeJulToYmd(julian-date)
Returns the Julian day given a datetime.

TimeSubtract(datetime, datetime difference)
Subtracts one YmdHms variable from another.

TimeWait(YmdHms)
Pauses execution and waits for the date/time to pass.

TimeYmdHms(   )
Returns current date/time in the date/time format.

Version(   )
Returns the version of the parent program currently running.

VersionDLL(   )
Returns the version of the WIL interpreter currently running.

WaitForKey(key,    key,    key, key, key)
Waits for a specific key to be pressed.

WallPaper(bmp-filename, tilemode)
Changes the Windows wallpaper.

While    expression
Conditionally and/or repeatedly executes a series of statements.

WinActivate(partial-winname)
Makes an application window the active window.

WinActivChild(partial-parent-windowname, partial-child-windowname)
Activates a previously running child window.

WinArrange(style)
Arranges all running application windows on the screen.

WinClose(partial-winname)
Closes an application window.

WinCloseNot(partial-winname [,partial-winname])   
Closes all application windows except those specified.

WinExeName(partial-winname)
Returns the name of the executable file which created a specified window.

WinExist(partial-winname)
Tells if a window exists.

WinExistChild(partial-parent-windowname, partial-child-windowname)
Tells if a specified child window exists.

WinGetActive(   )
Gets the title of the active window.

WinHelp(helpfile, function, keyword)
Calls a Windows help file.

WinHide(partial-winname)
Hides an application window.

WinIconize(partial-winname)
Turns an application window into an icon.

WinIdGet(partial-winname)
Returns a unique "Window ID" (pseudo-handle) for the specified window name.

WinIsDOS(partial-winname)

Tells whether or not a particular window is a DOS or console-type window.

WinItemChild(partial-parent-windowname)
Returns a list of all the child windows under this parent.

WinItemize(   )
Lists all the main windows currently running.

WinItemNameId()
Returns a list of all open windows and their Window ID's.

WinMetrics(request#)
Returns Windows system information.

WinName(   )
Returns the name of the window calling the WIL Interpreter.

WinParmGet(request#)
Returns system information.

WinParmSet(request#, new-value, ini-control)
Sets system information.

WinPlace(x-ulc, y-ulc, x-brc, y-brc,    partial-winname)
Changes the size and position of an application window on the screen.

WinPlaceSet(win-type partial-winname)
Returns window coordinates.

WinPlaceSet(win-type, partial-winname, position -string)
Sets window coordinates.

WinPosition(partial-winname)
Returns window position.

WinResources(request#)
Returns information on available memory and resources.

WinShow(partial-winname)
Shows a window in its "normal" state.

WinState(partial-winname)
Returns the current state of a window.

WinSysInfo() {*32}()
Returns system configuration information.

WinTitle(old-partial-winname, new-winname)
Changes the title of an application window.

WinVersion(level)
Returns the version of Windows that is currently running.

WinWaitClose(partial-winname)
Waits until an application window is closed.

WinZoom(partial-winname)
Maximizes an application window to full-screen.

Yield
Pauses WIL processing so other applications can process some messages.

TRUEyesyesyesyesWIL JUMPSWILjumpyesyes31/07/95

Table of Contents

Application
Branching
Clipboard
Close
Commands
Display
DOS
Functions
Hide
Input
Introduction
Macro
Prompt
Rearrange
Resize
Run
String
WIL
Windows
FileItemize (file-list)
DirItemize (dir-list)
Nicer File Selection
Nicer Messages

Application
A large computer program dedicated to performing a major task.    It can accomplish its work alone.    A
utility program, in contrast, works on other programs or operating systems.

Branching
A process of first testing for the truth of a condition during execution of a computer program and then
going to another location in that program based on the results of the test.

Clipboard
A temporary storage place for text or graphic data.    Often used to transfer data within or between
application programs.    Putting information into the clipboard normally erases the prior contents.    WIL
has a ClipAppend feature for permitting data to be added.

Close
Remove a window and end the process that owned that window.    See Hide.

Commands
Commands perform an action without receiving back a result.    For instance, the Yield command
relinquishes processing time to other processes without receiving any sort of a report on how successful
the operation was.

Display
The action of showing information on a computer screen.    The screen, itself, can also be called the
"display".

DOS
Disk Operating System for personal microcomputers.    Several companies produce proprietary versions
of DOS    It forms the operational foundation of the personal computer.

Functions
Functions perform actions and return a value that can be captured in a variable for further use.

Hide
Hide a window from view but keep the associated program running in the background.    See Close.

Input
Enter information into an edit dialog box and signal the computer that the information is ready.

Introduction
The WIL programming language consists of a large number of functions and commands, which we
describe in detail in this section.

We use a shorthand notation to indicate the syntax of the functions.

Function names and other actual characters you type are in boldface.    Optional parameters are
enclosed in square brackets "[]".    When
a function takes a variable number of parameters, the variable parts will be followed by ellipses ("...").
Take, for example, string concatenation:

StrCat (string[, string...])
This says that the StrCat function takes at least one string parameter.    Optionally, you can specify more
strings to concatenate.    If you do, you must separate the strings with commas.

For each function and command, we show you the Syntax, describe the Parameters (if any), the value it
Returns (if any), a description of the function, Example code (shown in Courier type), and related
functions you may want to See Also.

Items marked {*M} are available only in menu script implementations.

(i) indicates an integer parameter or return value.
(s) indicates a string parameter or return value.
(f) indicates a floating point parameter or return value.
(t) indicates special type information described in the function's text.

Macro
A sequence of operations in a computer program executed through one command.

Prompt
Request information from the operator of a computer.    This is usually done in a dialog box called a
"message box".

Rearrange
Change the order or position of windows on a computer screen.    This is important for visibility and
because the topmost window is the location where user interaction, like data entry, takes place.

Resize
Change the size of a program window on a computer display.

Run
Launch a computer program.    Running a program can be simply starting it.    In addition, optional
information the program needs to operate can be included in a Run command.

String
Strings are lengths of text that contain characters, numbers, or both.    Strings are, however, treated in the
computer as text.    For example, a "string" of numbers cannot be used in arithmetic operations.

WIL
Windows Interface Language:    a procedural language optimized for system control operations.    Can be
used as a macro language common to all application programs running under Microsoft Windows
versions 3.1 and above.

Windows
A system of boxes called "windows" used to represent computer programs and operations for controlling
them.    This system serves as an interface for personal computers.    It is a product of Microsoft
Corporation.

FileItemize (file-list)
Returns a space-delimited list of files.
This function compiles a list of filenames and separates the names with spaces.    There are several
variations we can use:
FileItemize("*.doc")

would give us a list of all files in the current directory with a DOC extension,
FileItemize("*.com *.exe")

would give us a list of all files in the current directory with a COM or EXE extension, and
FileItemize("*.*")

would give us a list of all files in the current directory.
Of course, we need to be able to use this list, and for that we have:

AskItemList (title, list, delimiter, sort mode, select mode)
Displays a list box filled with items from a list you specify in a string.    The items are separated in your
string by a delimiter character.   
This is the function which actually displays the list box.    Remember that FileItemize returns a file list
delimited by spaces, which would look something like this:

FILE1.DOC FILE2.DOC FILE3.DOC

When we use AskItemList, we need to tell it that the delimiter is a space.    We do this as follows:
files = FileItemize("*.doc *.txt")
afile = AskItemList("Select File to edit", files, " ", @unsorted, @single)
Run("notepad.exe", afile)

which produces:

First, we use FileItemize to build a list of filenames with DOC and TXT extensions.    We assign this list to
the variable files.    Then, we use the AskItemList function to build a list box, passing it the variable
files as its second parameter.    The third parameter we use for AskItemList is simply a space with
quote marks around it; this tells AskItemList that the list in variable files is delimited by spaces.    (Note
that this is different from the null string that we've seen earlier     here, you must include a space between
the quote marks.)    Using the fourth parameter set the sort mode to choose how to display the text, sorted
or unsorted.    The fifth parameter sets the select mode allowing you to choose a single item or multiple
items from the list.    Finally, we assign the value returned by AskItemList to the variable afile, and run
Notepad using that file.
In the list box, if the user presses Enter or clicks on the OK button without a file being highlighted,
AskItemList returns a null string.    If you want, you can test for this condition:
files = FileItemize("*.doc *.txt")
while @TRUE

afile = AskItemList("Select File to edit", files, " ",
@unsorted, @single)

If afile != "" Then break
;break terminates the While structure transfering control to the ;statement

following the endwhile.
endwhile
Run("notepad.exe", afile)

DirItemize (dir-list)
Returns a space-delimited list of directories.
This function is similar to FileItemize, but instead of returning a list of files, it returns a list of directories.   
Remember we said that FileItemize only lists files in the current directory.    Often, we want to be able to
use files in other directories as well.    One way we can do this by first letting the user select the
appropriate directory, using the DirItemize and AskItemList combination:
DirChange("C:\")
subdirs = DirItemize("*.*")
targdir = AskItemList("Select dir", subdirs, " ", @sorted, @single) if targdir != ""
then DirChange(targdir)
files = FileItemize("*.*")
afile = AskItemList("Select File to edit", files, " ", @sorted, @single)
Run("notepad.exe", afile)

First we change to the root directory.    Then we use DirItemize to get a list of all the sub-directories off of
the root directory.    Next, we use AskItemList to give us a list box of directories from which to select.   
Finally, we change to the selected directory, and use FileItemize and AskItemList to pick a file.
Although this WIL program works, it needs to be polished up a bit.    What happens if the file we want is in
the \WINDOWS\BATCH directory?    Our WIL program doesn't go more than one level deep from the root
directory.    We want    to continue down the directory tree, but we also need a way of telling when we're at
the end of a branch.    As it happens, there is such a way: DirItemize will return a null string if there are no
directories to process.    Given this knowledge, we can improve our file selection logic:
DirChange("C:\")
; Directory selection loop
while @TRUE ; Loop forever til break do us part

dirs = DirItemize("*")
If dirs == "" Then break
targ = AskItemList("Select dir", dirs, " ", @sorted, @single)
If targ == "" Then break
DirChange(targ)

endwhile
;
; File selection loop
while @TRUE ; Loop forever til break do us part

files = FileItemize("*.*")
afile = AskItemList("Select File to edit", files, " ",

@sorted, @single)
If afile != "" Then break

endwhile
Run("notepad.exe", afile)

First of all, we set up a repeating while loop.    The "While @TRUE" will repeat the loop forever.    In the
loop itself we use the break statement to exit the loop.    After we use the DirItemize function to try to get
a list of the directories at the current level, we test the returned value for a null string.    If we have a null
string, then we know that the current directory has no sub-directories, and so we proceed to the file
selection logic by breaking out of the directory selection loop.    If, however, DirItemize returns a non-
blank list, then we know that there is, in fact, at least one sub-directory.    In that case, we use
AskItemList to present the user with a list box of directories.    Then, we test the value returned by
AskItemList.    If the returned value is a null string, it means that the user did not select a directory from
the list, and presumably wants a file in the current directory.    We happily oblige by breaking out of the
directory selection loop.    On the other hand, a non-blank value returned by AskItemList indicates that
the user has selected a sub-directory from the list box.    In that case, we change to the selected directory,
and the endwhile causes the directory selection loop to be repeated.    We continue this process until
either (a) the user selects a directory, or (b) there are no directories left to select.    Eventually, we move to
the file selection loop.

Nicer File Selection
An even more elegant way of selecting a file name is provided by the Dialog Editor, which also allows
the user to select various options via check boxes and radio buttons from a custom designed dialog box.

Nicer Messages
Have you tried displaying long messages, and found that WIL didn't wrap the lines quite the way you
wanted?    Here are a couple of tricks.

@CRLF
@TAB

@CRLF and @TAB are string constants containing, respectively, a carriage-return line-feed pair and a tab
character.
We want to be able to insert a carriage return/line feed combination at the end of each line in our output,
and the @CRLF string constant will let us do that..    For example, let's say we want to do this:
Message("", "This is line one This is line two")

If we just inserted the variables into the string, as in:
Message("", "This is line one @crlf This is line two")

we would not get the desired effect.    WIL would simply treat it as ordinary text:

However, WIL does provide us with a method of performing variable and string constant substitution such
as this, and that is by delimiting the variables or string constants with percentage signs (%).    If we do
this:
Message("", "This is line one%@crlf%This is line two")

we will get what we want:

Note that there is no space after %@crlf%; this is so that the second line will be aligned with the first line
(every space within the delimiting quote marks of a string variable is significant).

yesTRUEnono&About&PrintyesyesyesyesWIL A TO K JUMP
FILEWILAKyes27/10/95

Table of Contents

Introduction
About
Abs
Acos
AddExtender
AppExist
AppWaitClose
Asin
AskFileName
AskFileText
AskItemList
AskLine
AskPassword
AskYesNo
Atan
Average
Beep
Binary Operations
BinaryAlloc
BinaryCopy
BinaryEodGet
BinaryEodSet
BinaryFree
BinaryIndex
BinaryIndexNC
BinaryPeek
BinaryPeekStr
BinaryPoke
BinaryPokeStr
BinaryRead
BinaryStrCnt
BinaryWrite
Break
ButtonNames
Call
Ceiling
Char2Num
ClipAppend
ClipGet
ClipPut
Continue
Cos
Cosh
CurrentFile {*M}
CurrFilePath {*M}
CurrentPath {*M}
DateTime

DDEExecute
DDEInitiate
DDEPoke
DDERequest
DDETerminate
DDETimeout
Debug
DebugData
Decimals
Delay
Dialog
DirAttrGet
DirAttrSet
DirChange
DirExist
DirGet
DirHome
DirItemize
DirMake
DirRemove
DirRename
DirWindows
DiskExist
DiskFree
DiskSize
DiskScan
Display
DllCall
DllCall    Additional    information
DllFree
DllHinst
DllHwnd
DllLoad
DOSVersion
Drop
EndSession
Environment
EnvironSet
EnvItemize
ErrorMode
Exclusive
Execute
ExeTypeInfo
Exit
Exp
Fabs
FileAppend
FileAttrGet
FileAttrSet
FileClose

FileCompare
FileCopy
FileDelete
FileExist
FileExtension
FileFullName
FileItemize
FileLocate
FileMapName
FileMove
FileNameLong {*32}
FileNameShort {*32}
FileOpen
FilePath
FileRead
FileRename
FileRoot
FileSize
FileTimeCode
FileTimeGet
FileTimeSet
FileTimeTouch
FileWrite
FileYmdHms
Floor
For
GetExactTime
GetTickCount
GoSub
Goto
IconArrange
IconReplace
If ... Else ... Endif...If ... Then ... Else
IgnoreInput
IniDelete
IniDeletePvt
IniItemize
IniItemizePvt
IniRead
IniReadPvt
IniWrite
IniWritePvt
InstallFile
Int
IntControl
IsDefined
IsFloat
IsInt
IsKeyDown
IsLicensed

IsMenuChecked {*M}
IsMenuEnabled {*M}
IsNumber
ItemCount
ItemExtract
ItemInsert
ItemLocate
ItemRemove
ItemSelect
ItemSort
KeyToggleGet
KeyToggleSet

Help file produced by    HELLLP! v2.3a , a product of Guy Software, on 10/27/95 for WILSON
WINDOWWARE, INC..
The above table of contents will be automatically completed and will also provide an excellent cross-
reference for context strings and topic titles.    You may leave it as your main table of contents for your
help file, or you may create your own and cause it to be displayed instead by using the I button on the
toolbar.    This page will not be displayed as a topic.    It is given a context string of _._ and a
HelpContextID property of 32517, but these are not presented for jump selection.
HINT:    If you do not wish some of your topics to appear in the table of contents as displayed to your
users (you may want them ONLY as PopUps), move the lines with their titles and contexts to below this
point.    If you do this remember to move the whole line, not part.    As an alternative, you may wish to set
up your own table of contents, see Help under The Structure of a Help File.
    Do not delete any codes in the area above the Table of Contents title, they are used internally by
HELLLP!

Introduction
The WIL programming language consists of a large number of functions and commands, which we
describe in detail in this section.
We use a shorthand notation to indicate the syntax of the functions.
Function names and other actual characters you type are in boldface.    Optional parameters are
enclosed in square brackets "[]".    When a function takes a variable number of parameters, the variable
parts will be followed by ellipses ("...").
Take, for example, string concatenation:
StrCat (string[, string...])
This says that the StrCat function takes at least one string parameter.    Optionally, you can specify more
strings to concatenate.    If you do, you must separate the strings with commas.
For each function and command, we show you the Syntax, describe the Parameters (if any), the
value it Returns (if any), a description of the function, Example code (shown in Courier type), and
related functions you may want to See Also.
Items marked {*M} are available only in menu script implementations.
(i) indicates an integer parameter or return value.
(s) indicates a string parameter or return value.
(f) indicates a floating point parameter or return value.
(t) indicates special type information described in the functions text.

About
Displays the about message box which gives program information.

Syntax:
About()

Parameters:
none

Returns:
(i) always 1.

This function displays a message box containing copyright and version information.

Example:
About()

See Also:
Version, VersionDLL

Abs
Returns the absolute value of an integer.

Syntax:
Abs (integer)

Parameters:
(i) integer integer whose absolute value is desired.

Returns:
(i)                      absolute value of integer.

This function returns the absolute (positive) value of the integer which is passed to it, regardless of
whether that integer is positive or negative. If a floating point number is passed as a parameter, it will be
converted to an integer.

Example:
dy = Abs(y1 - y2)
Message("Years", "There are %dy% years 'twixt %y1% and %y2%")

See Also:
Average, Fabs, IsNumber, Max, Min

Acos
Calculates the arccosine.

Syntax:
Acos(x)

Parameters:
(f) x                      floating point number whose arccosine is desired.

Returns:
(f)                      the Acos function returns the arccosine result of x.

The Acos function returns the arccosine of x in the range 0 to p radians.    The value of x must be
between -1 and 1, otherwise a domain error will occur.

Example:
real=AskLine("ArcCos", "Enter a real number between -1 and 1", "0.5")
answer=Acos(real)
Message("Arccos of %real% is",answer)

See Also:
Asin, Atan, Cos, Sin, Tan

AddExtender
Installs a WIL extender dll.

Syntax:
AddExtender(filename)

Parameters:
(s) filename WIL extender Dll filename

Returns:
(i)                      @TRUE if function succeeded

@FALSE if function failed.

WIL extender Dlls are special Dlls designed to extend the built-in function set of the WIL processor.   
These Dlls typically add functions not provided in the basic WIL set, such as network commands for
particular networks (Novell, Windows for WorkGroups, LAN Manager and others), MAPI, TAPI, and other
important Application Program Interface functions as may be defined by the various players in the
computer industry from time to time.    These Dlls may also include custom built function libraries either by
the original authors, or by independent third party developers.    (An Extender SDK is available).    Custom
extender Dlls may add nearly any sort of function to the WIL language, from the mundane network, math
or database extensions, to items that can control fancy peripherals, including laboratory or manufacturing
equipment.
Use this function to install extender Dlls as required.    Up to 10 extender Dlls may be added.    The total
number of added items may not exceed 100 functions and constants.    The AddExtender function must
be executed before attempting to use any functions in the extender library.    The AddExtender function
should be only executed once in each WIL script that requires it.
The documentation for the functions added are supplied either in a separate manual or disk file that
accompanies the extender Dll.

Example:
; Add vehicle radar processing dll controlling billboard visible to
; motorists, and link to enforcement computers.
; The WIL Extender SPEED.DLL adds functions to read a radar speed
; detector(GetRadarSpeed) , put a message on a billboard visible to
; the motorist (BillBoard), take a video of the vehicle (Camera), and
; send a message to alert enforcement personnel (Alert) that a
; motorist in violation along with a picture id number to help
; identify the offending vehicle and the speed which it was going.
;
AddExtender("SPEED.DLL")
BillBoard("Drive Safely")
While @TRUE

; Wait for next vehicle
while GetRadarSpeed()<5 ; if low, then just radar noise

Yield ; wait a bit, then look again
endwhile
speed=GetRadarSpeed() ; Something is moving out there
if speed < 58

BillBoard("Drive Safely") ; Not too fast.
else

if speed < 63
BillBoard("Watch your Speed") ; Hmmm a hot one

else
if speed < 66

BillBoard("Slow Down") ; Tooooo fast
else

BillBoard("Violation Pull Over")
pictnum = Camera() ; Take Video Snapshot
Alert(pictnum, speed); Pull this one over

endif
endif

endif
endwhile

See Also:
DllCall

AppExist
Tells if an application is running.

Syntax:
AppExist (program-name)

Parameters:
(s) program-name name of a Windows EXE or DLL file.

Returns:
(i)                  @TRUE if the specified application is running;

@FALSE if the specified application is not running.

Use this function to determine whether a specific Windows application is currently running.    Unlike
WinExist, you can use AppExist without knowing the title of the application's window.
"Program-name" is the name of a Windows EXE or DLL file, including the file extension (and, optionally, a
full path to the file).
Note:    This function is not available in 32 bit versions of WIL

Example:
If AppExist("clock.exe") == @FALSE Then Run("clock.exe", "")

See Also:
AppWaitClose, RunWait, RunShell, WinExeName, WinExist

AppWaitClose
Suspends WIL program execution until a specified application has been closed.

Syntax:
AppWaitClose (program-name)

Parameters:
(s) program-name name of a Windows EXE or DLL file.

Returns:
(i)                  @TRUE if the specified application is running;

@FALSE if the specified application is not running.

Use this function to suspend the WIL program's execution until the user has finished using a given
application and has manually closed it.    Unlike WinWaitClose, you can use AppWaitClose without
knowing the title of the application's window.
"Program-name" is the name of a Windows EXE or DLL file, including the file extension (and, optionally, a
full path to the file).
Note:    This function is not available in 32 bit versions of WIL

Example:
Run("clock.exe", "")
Display(4, "Note", "Close Clock to continue")
AppWaitClose("clock.exe")
Message("Continuing...", "Clock closed")

See Also:
AppExist, Delay, RunShell, RunWait, WinExeName, WinWaitClose, Yield

Asin
Calculates the arcsine.

Syntax:
Asin(x)

Parameters:
(f) xfloating point number whose arcsine is desired.

Returns:
(f)                    the Asin function returns the arcsine result of x.

The Asin function returns the arcsine of x in the range -p/2 to p/2 radians.    The value of x must be
between -1 and 1 otherwise a domain error will occur.
Example:
real=AskLine("ArcSin", "Enter a real number between -1 and 1", "0.5")
answer=Asin(real)
Message("Arcsin of %real% is", answer)

See Also:
Acos, Atan, Cos, Sin, Tan

AskFileName
Returns the filename as selected by a FileOpen dialog box.

Syntax:
AskFileName(title, directory, filetypes, default filename, flag)

Parameters:
(s) title title of the file name select box.
(s) directory initial drive and directory.
(s) filetypes file type selection definition (see below)*.* text highlighted in the

File Name field of the Open/Save dialog box or file filter.    (format:
description mask | description mask | etc.).

(s) default filenamedefault filename or mask.
(s) flag 0 for Save style ; 1 for Open style.

Returns:
(s) string A string containing the filename and path.

This function is the equivalent of a standard Common Dialog FileOpen or a FileSave dialog box.    The
initial drive and directory is logged, and either a FileSave or a FileOpen dialog box is presented to the
user.    The default filename or mask is filled in, as well as a selection of filetypes.
The user can either type in a filename or select one via the file list box.    File types displayed may be
selected from the File Type drop down list box.    The File Type drop down list box is specified via the
filetypes parameter.    The filetype parameter is defined as follows:

filetypes    := Description|Mask| [Description|Mask| ...]
Description := Any human readable string
Mask := filespec [; filespec    ...]
filespec := DOS File wildcard mask

Basically, a description - visible to the user in the drop down list box, followed by the vertical bar
symbol(|), followed by a file mask - for the computer, followed by another vertical bar.    This description
may be repeated for each desired file type selection.

Example:
types="All Files|*.*|WIL Files|*.wbt;*.mnu|Text Files|*.txt|"
fn1=AskFileName("SelectFile", "C:\WinBatch", types, "Sol.wbt", 1)
Message("File selected was", fn1)

which produces:

and then:

See Also:
AskFileText, AskItemList, AskLine

AskFileText
Allows the user to choose an item from a list box initialized with data from a file.

Syntax:
AskFileText(title, filename, sort mode, select mode)

Parameters:
(s) title title of the list box.
(s) filename file containing the contents of list box.
(s) sort mode @sorted for an alphabetic list.

@unsorted to display the text as is.
(s) select mode @single to limit selection to one item.

@multiple allow selection of more than one item.
Returns:

(s) the selected item or items.    If more than one item is selected it will be
returned as a tab delimited list.

Note:    This function replaces TextBox and TextBoxSort.

This function loads a file into a Windows list box, either as is or sorted alphabetically, and displays the list
box to the user.    The line or lines highlighted by the user (if any) will be returned to the program as a tab
delimited list (see ItemExtract).    AskFileText has two primary uses:    First, it can be used to display
multi-line messages to the user.    In addition, because of its ability to return selected lines, it may be used
as a multiple choice question box.    If the user does not make a selection, a null string ("") is returned.    If
disk drive and path are not part of the filename, the current directory will be examined first, and then the
DOS path will be searched to find the desired file.

Example:
A=AskFileText("Program Manager", "progman.ini", @unsorted, @single)
Message("The line chosen was", A)

which produces:

See Also:
AskItemList, AskFileName, AskLine

AskItemList
Allows the user to choose an item from a list box initialized with a list variable.

Syntax:
AskItemList(title, list variable, delimiter, sort mode, select mode)

Parameters:
(s) title title of the list box.
(s) list variable a string containing a list of items.
(s) delimiter a character to act as a delimiter between items in the list.
(s) sort mode @sorted for an alphabetic list.

@unsorted to display the list of items as is.
(s) select mode @single to limit selection to one item.

@multiple to allow selection of more than one item.
Returns:

(i) the selected item or items.

Note:    This function replaces ItemSelect and TextSelect.

This function displays a list box.    The list box is filled with a list of items, sorted or unsorted, taken from a
string you provide to the function.    Each item in the string must be separated ("delimited") by a character,
which you also pass to the function (we suggest using Tabs).    The user selects one of the items by either
double clicking on it, or single-clicking and pressing OK.    The item is returned as a string.    If you create
the list with the FileItemize or DirItemize functions you will be using a space-delimited list.    WinItemize,
however, creates a tab-delimited list of window titles, since titles can have embedded spaces. The line(s)
highlighted by the user (if any) will be returned to the program.    If multiple lines are selected, they will be
separated by the specified delimiter.    If the user does not make a selection, a null string ("") is returned

Example:
tab=num2char(9)
list=strcat("Red",tab,"Blue",tab,"Yellow",tab,"Green")
A=AskItemList("Colors", list, tab, @sorted, @single)
Message("The item selected is", A)

produces:

See Also:
AskFileText, AskFileName

AskLine
Prompts the user for one line of input.

Syntax:
AskLine (title, prompt, default)

Parameters:
(s) title title of the dialog box.
(s) prompt question to be put to the user.
(s) default default answer.

Returns:
(s)                  user response.

Use this function to query the user for a line of data.    The entire user response will be returned if
the user presses the OK button or the Enter key.    If the user presses the Cancel button or the
Esc key, the processing of the WIL program is canceled.

Example:
name = AskLine("Game", "Please enter your name", "")
game = AskLine("Game", "Favorite game?", "Solitaire")
message(StrCat(name,"'s favorite game is "), game)

produces:

And then, if Richard types "Scramble" and clicks on the OK button:

See Also:
AskPassword, AskYesNo, Dialog, Display, AskItemList, Message, Pause, AskFileText

AskPassword
Prompts the user for a password.

Syntax:
AskPassword (title, prompt)

Parameters:
(s) title title of the dialog box.
(s) prompt question to be put to the user.

Returns:
(s)                  user response.

Pops up a special dialog box to ask for a password.    An asterisk (*) is echoed for each character that the
user types; the actual characters entered are not displayed.    The entire user response will be returned if
the user presses the OK button or the Enter key.    If the user presses the Cancel button or the Esc key,
the processing of the WIL program is canceled.

Example:
pw = AskPassword("Security check", "Please enter your password")
If StriCmp(pw, "Erin") == 0

Run(Environment("COMSPEC"), "")
Exit

else
Pause("Security breach", "Invalid password entered")

endif

See Also:
AskLine, AskYesNo, Dialog

AskYesNo
Prompts the user for a yes or no answer.

Syntax:
AskYesNo (title, question)

Parameters
(s) title title of the question box.
(s) question question to be put to the user.

Returns:
(i)                  @YES or @NO, depending on the button pressed.

This function displays a message box with three pushbuttons - Yes, No, and Cancel.

Example:
q = AskYesNo('Testing', 'Please press "YES"')
If q == @YES Then Exit
Display(3, 'ERROR', 'I said press "YES"')

produces:

... and then, if the user presses No:

See Also:
AskLine, AskPassword, Dialog, Display, AskItemList, Message, Pause, AskFileText

Atan
Calculates the arc tangent.

Syntax:
Atan(x)

Parameters:
(f) xfloating point number whose arc tangent is desired.

Returns:
(f)                  The Atan function returns the arc tangent result of x.

The Atan function calculates the arc tangent of x, which returns a value in the range -p/2 to p/2 radians.   
If x is 0 a domain error occurs.

Example:
real=AskLine("ArcTan", "Enter a real number ", "34.6")
answer=Atan(real)
Message("ArcTan of %real% is", answer)

See Also:
Acos, Asin, Cos, Sin, Tan

Average
Returns the average of a list of numbers.

Syntax:
Average(list)

Parameters:
(f) list comma delimited floating point numbers to be averaged.

Returns:
(f)                  the average of the numbers.

Use this function to compute the mean average of a series of numbers, delimited by commas.    It adds
the numbers provided as parameters, and then divides by the number of parameters.    This function
returns a floating point value.   

Example:
avg = Average(1.7, 2.6, 3, 4, 5, 6, 7, 8, 9, 10.6, 11, 12)
Message("The average is", avg)

See Also:
Abs, Fabs, Max, Min, Random

Beep
Beeps once.

Syntax:
Beep

Parameters:
(none)

Returns:
(not applicable)

Use this command to produce a short beep, generally to alert the user to an error situation or to get the
user's attention.

Example:
Beep
Pause("WARNING!!!", "You are about to destroy data!")

See Also:
PlayMedia, PlayMidi, PlayWaveForm, Sounds

Binary Operations
File manipulation in fast RAM memory.
WIL contains a number of functions designed to allow direct access to areas - buffers - of computer
memory.    By managing and working with these buffers using the assorted Binary functions provided, you
can implement a number of operations that otherwise would be tedious and time consuming.    Using the
Binary functions, you can perform edits on any sort of file, build new files, build data structures, and do
high-speed editing of multiple files.    If you understand the structure of a data file, you can perform fast
look-ups of data with these functions.
The principal, required Binary functions are BinaryAlloc and BinaryFree.    The BinaryAlloc function
allows you to allocate a buffer of almost any size.    You may have up to ten separate buffers allocated at
one time.    When operations are complete with a particular buffer, the BinaryFree function is used to
return it to the system.
There are BinaryRead and BinaryWrite functions to read files into allocated buffers, and to write the
contents of    buffers back to files.    A BinaryCopy function can move sections of one buffer to another
one, allowing buffers to be broken up and re-combined in different fashions.
A set of peek and poke functions, BinaryPeek, BinaryPeekStr, BinaryPoke, and BinaryPokeStr allow
direct editing and modification of the buffers.    These functions can initialize a buffer that can be passed to
a third party Dll via the DllCall function.
A BinaryIndex function is available to assist in searching buffers for known data patterns, and a
BinaryStrCnt function can quickly scan a buffer and return the number of occurrences of particular data
patterns.    A couple of functions to get and set the End-of-Data point of each buffer (which is automatically
tracked), BinaryEodGet and BinaryEodSet, and the average unreconstructed hacker has all the tools
necessary to become a real hazard to the community at large.

BinaryAlloc
Allocates a memory buffer of the desired size.

Syntax:
BinaryAlloc(size)

Parameters:
(i) size size in bytes of the desired memory buffer.

Returns:
(i)                  returns a handle to a buffer of the desired size, or

@FALSE if the allocation fails.

Use this function allocate a memory buffer for Binary operations.    Up to 10 separate buffers may be
allocated concurrently.    Nearly any reasonably sized buffer may be allocated.    Windows users may
allocate over 10 million bytes, assuming sufficient system memory and page file space is available.   
Users of 32 bit versions of Windows may allocate, theoretically, over 2 trillion bytes, the real, practical
bounds are not established and will vary with system configuration.

When operations on a particular buffer are complete, it should be released with the BinaryFree function.

Example:
; This example edits the Config.sys file
; by adding a new line to the bottom of the file.
;
fs=FileSize("C:\CONFIG.SYS")
; Allocate a buffer the size of your file + 100 bytes.
binbuf = BinaryAlloc(fs+100)
if binbuf == 0

Message("Error", "BinaryAlloc Failed")
else

; Read the file into the buffer.
BinaryRead(binbuf, "C:\CONFIG.SYS")
; Append a line to the end of the file in buffer.
BinaryPokeStr(binbuf, fs, "DEVICE=C:\FLOOGLE.SYS%@crlf%")
; Write modified file back to the file from the buffer.
BinaryWrite(binbuf, "C:\CONFIG.SYS")
binbuf=BinaryFree(binbuf)

endif

See Also:
Binary Operations, BinaryCopy, BinaryFree, BinaryRead, DllCall

BinaryCopy
Copies bytes of data from one binary buffer to another.

Syntax:
BinaryCopy(handle targ, offset targ, handle src, offset src, count)

Parameters:
(i) handle targ handle of target buffer.
(i) offset targ zero-based offset into the target buffer specifying where the data to
                  be copied should be placed.
(i) handle src handle of the source buffer.
(i) offset src zero-based offset into the source buffer specifying where the data to
                  be copied starts.
(i) count the number of bytes to copy.

Returns:
(i)                  number of bytes actually copied.    The byte count may be
                  lower thanthat specified in the command if the source block does not

contain
                  sufficient data.

Use this function to move blocks of data from one binary buffer to another one.    Count bytes are
transferred from the handle-src buffer starting at offset-src to the handle-targ buffer starting at offset-
targ.   

Example:
; This example edits the config.sys file
; and adds a new line at the top of the file.
;
fs1 = FileSize("C:\CONFIG.SYS")
binbuf1 = BinaryAlloc(fs1)
BinaryRead(binbuf1, "C:\CONFIG.SYS")
binbuf2=binaryalloc(fs1 + 200)
n = BinaryPokeStr(binbuf2, 0, "Rem Note new line at top")
a2=BinaryCopy(binbuf2, n, binbuf1, 0, fs1)
BinaryWrite(binbuf2, "C:\CONFIG.SYS")
binbuf2 = BinaryFree(binbuf2)
binbuf1 = BinaryFree(binbuf1)

See Also:
Binary Operations, BinaryAlloc, BinaryFree, BinaryRead, BinaryWrite

BinaryEodGet
Returns the offset of the free byte just after the last byte of stored data.

Syntax:
BinaryEodGet(handle)

Parameters:
(i) handle handle of buffer.

Returns:
(i)                  offset of the free byte just after the last byte of stored data.

Use this function to determine the beginning of the free area just past the already initialized data in a
buffer.    This value is automatically set by any Binary function that modifies the buffer.

Example:
; This example adds three lines to the end of the
; config.sys file.
;
fs1 = FileSize("C:\CONFIG.SYS")
binbuf1 = BinaryAlloc(fs1 + 100)
BinaryRead(binbuf1, "C:\CONFIG.SYS")
a = BinaryEodGet(binbuf1)
BinaryPokeStr(binbuf1, a, "REM ADDING FIRST NEW LINE TO END%@CRLF%")
a = BinaryEodGet(binbuf1)
BinaryPokeStr(binbuf1, a, "REM ADDING SECOND LINE TO END%@CRLF%")
a = BinaryEodGet(binbuf1)
BinaryPokeStr(binbuf1, a, "REM ADDING THIRD LINE TO END%@CRLF%")
BinaryWrite(binbuf1, "C:\CONFIG.SYS")
BinaryFree(binbuf1)

See Also:
Binary Operations, BinaryAlloc, BinaryEodSet, BinaryIndex,

BinaryEodSet
Sets the EOD (end of data) value of a buffer.

Syntax:
BinaryEodSet(handle, offset)

Parameters:
(i) handle handle of buffer.
(i) offset desired offset to set the end-of-data value to.

Returns:
(i)                  previous value.

Use this function to update the EOD value.    This can be done when data at the end of a buffer is to be
discarded, or when the buffer has been modified by an external program - such as via a DllCall.

Example:
; This function extracts the first line from the
; config.sys file and writes it to a new file.

fs1 = FileSize("C:\CONFIG.SYS")
binbuf1 = binaryalloc(fs1 + 100)
BinaryRead(binbuf1, "C:\CONFIG.SYS")
a = BinaryIndex(binbuf1, 0, @CRLF, @FWDSCAN)
; we just found find end of first line
a = a + 2 ; add 2 to skip crlf
BinaryEodSet(binbuf1, a)
BinaryWrite(binbuf1, "firstlin.txt")
binbuf1 = BinaryFree(binbuf1)

See Also:
Binary Operations, BinaryAlloc, BinaryEodGet, BinaryIndex, DllCall

BinaryFree
Frees a buffer previously allocated with BinaryAlloc.

Syntax:
BinaryFree(handle)

Parameters:
(i) handle handle of buffer to free.

Returns:
(i)                  always 0.

Use this function to free a binary buffer previously allocated by the BinaryAlloc function.    After freeing
the buffer, no further operations should be performed on the buffer or its handle.

Example:
fs=FileSize("C:\CONFIG.SYS")
binbuf = BinaryAlloc(fs+100)
if binbuf == 0

Message("Error", "BinaryAlloc Failed")
else

BinaryRead(binbuf, "C:\CONFIG.SYS")
BinaryPokeStr(binbuf, fs, "DEVICE=C:\FLOOGLE.SYS%@crlf%")
BinaryWrite(binbuf, "C:\CONFIG.SYS")
binbuf=BinaryFree(binbuf)

endif

See Also:
Binary Operations, BinaryAlloc

BinaryIndex
Searches a buffer for a string. (case sensitive)

Syntax:
BinaryIndex(handle, offset, string, direction)

Parameters:
(i) handle handle of buffer.
(i) offset offset in the buffer to begin search.
(s) string the string to search for within the buffer.
(i) direction the search direction.    @FWDSCAN searches forwards, while

@BACKSCAN
searches backwards.

Returns:
(i)                  offset of string within the buffer, or 0 if not found.

This function searches for a string within a buffer.    Starting at the offset position, it goes forwards or
backwards depending on the value of the direction parameter.    It stops when it finds the string within
the buffer and returns the    string's beginning offset.

Note 1:    The string parameter may be composed of any characters except the null (00) character.    This
function cannot process a null character.    If you need to search for a null character, use the BinaryPeek
function in a for loop.

Note 2:    The return value of this function is possibly ambiguous.    A zero return value may mean the
string was not found, or it may mean the string was found starting at offset 0.    If there is a possibility
that the string to be searched for could begin at the beginning of the buffer, you must determine some
other way of resolving the ambiguity, such as using BinaryPeekStr.

Example:
; Find line number of line in config.sys where HIMEM occurs
fs1 = FileSize("C:\CONFIG.SYS")
binbuf1 = binaryalloc(fs1)
a1 = BinaryRead(binbuf1, "C:\CONFIG.SYS")
a = BinaryIndex(binbuf1, 0, "HIMEM", @FWDSCAN) ; find HIMEM
if a == 0

Message("Hmmm", "HIMEM not found in CONFIG.SYS file")
else

c = BinaryStrCnt(binbuf1, 0, a, @CRLF) + 1
Message("Hmmm", "HIMEM found on line %c%")

endif

See Also:
Binary Operations, BinaryCopy, BinaryIndexNc BinaryEodGet, BinaryEodSet, BinaryStrCnt

BinaryIndexNC
Searches a buffer for a string, ignoring case.

Syntax:
BinaryIndexNc(handle, offset, string, direction)

Parameters:
(i) handle handle of buffer.
(i) offset offset in the buffer to begin search.
(s) string the string to search for within the buffer.
(i) direction the search direction.    @FWDSCAN searches forwards, while

@BACKSCAN searches backwards.
Returns:

(i) offset of string within the buffer, or 0 if not found.

This function is like BinaryIndex, but performs a case-insensitive search for a string within a buffer.   
Starting at the offset position, it goes forwards or backwards depending on the value of the direction
parameter.    It stops when it finds the string within the buffer and returns the    string's beginning offset.

Note 1:    The string parameter may be composed of any characters except the null (00) character.    This
function cannot process a null character.    If you need to search for a null character, use the BinaryPeek
function in a for loop.

Note 2:    The return value of this function is possibly ambiguous.    A zero return value may mean the
string was not found, or it may mean the string was found starting at offset 0.    If there is a possibility
that the string to be searched for could begin at the beginning of the buffer, you must determine some
other way of resolving the ambiguity, such as using BinaryPeekStr.

Example:
; Find line number of line in config.sys where HIMEM occurs
fs1 = FileSize("C:\CONFIG.SYS")
binbuf1 = binaryalloc(fs1)
a1 = BinaryRead(binbuf1, "C:\CONFIG.SYS")
a = BinaryIndex(binbuf1, 0, "HIMEM", @FWDSCAN) ; find HIMEM
if a == 0

Message("Hmmm", "HIMEM not found in CONFIG.SYS file")
else

c = BinaryStrCnt(binbuf1, 0, a, @CRLF) + 1
Message("Hmmm", "HIMEM found on line %c%")

endif

See Also:
Binary Operations, BinaryCopy, BinaryIndex BinaryEodGet, BinaryEodSet, BinaryStrCnt

BinaryPeek
Returns the value of a byte from a binary buffer.

Syntax:
BinaryPeek(handle, offset)

Parameters:
(i) handle handle of buffer.
(i) offset offset in the buffer to obtain byte from.

Returns:
(i)                  byte value.

Use this function to return the value of a byte in the binary buffer.    Value will be between 0 and 255.

Example:
BinaryPoke(binbuf, 5, -14) ;Pokes a new value into the buffer.
a=BinaryPeek(binbuf, 5) ;Finds the value of a byte.
Message("Hmmm", "Returned value is %a%")
; Value will be 242 which is (256 - 14). 242 and -14 map
; to the same 8bit number.

See Also:
Binary Operations, BinaryCopy, BinaryPeekStr, BinaryPoke, BinaryPokeStr

BinaryPeekStr
Extracts a string from a binary buffer.

Syntax:
BinaryPeekStr(handle, offset, maxsize)

Parameters:
(i) handle handle of buffer.
(i) offset offset in the buffer the string starts at.
(i) maxsize maximum number of bytes in string.

Returns:
(s)                  string starting offset location in binary buffer.    String consists of all

non-zero
bytes up to the first zero byte or maxsize number of bytes.

This function is used    to extract string data from a binary buffer.    The desired starting offset and a
maxsize are passed to the function.    The function returns a string of bytes, starting at the specified
offset, and continuing until either a zero byte is found (which terminates the string) or the maxsize
number of bytes have been copied into the return string.

Example:
; This example searches the Config.sys for the first
; occurrence of the string HIMEM. It then extracts
; the line containing the string and prints it out.
;
fs = FileSize("C:\CONFIG.SYS")
binbuf = BinaryAlloc(fs)
BinaryRead(binbuf, "C:\CONFIG.SYS")
;
; Search for first occurrence of HIMEM.
himem = BinaryIndex(binbuf, 0, "HIMEM", @FWDSCAN)
; Single out beginning of line which contains HIMEM string,
; skipping over the @crlf.
linebegin = BinaryIndex(binbuf, himem, @CRLF, @BACKSCAN) + 2
;
; Search for the end of the line which contains the HIMEM string.
lineend = BinaryIndex(binbuf, himem, @CRLF, @FWDSCAN)
linelen = lineend-linebegin+1
;
; Extract the line with HIMEM string.
linedata=BinaryPeekStr(binbuf, linebegin, linelen)
binbuf=BinaryFree(binbuf)
Message("Himem.sys line in config.sys reads", linedata)

See Also:
Binary Operations, BinaryCopy, BinaryPeek, BinaryPoke, BinaryPokeStr

BinaryPoke
Pokes a new value into a binary buffer at offset.

Syntax:
BinaryPoke(handle, offset, value)

Parameters:
(i) handle handle of buffer.
(i) offset offset in the buffer to store byte into.
(i) value value to store.

Returns:
(i)            previous value.

This function pokes a value into the binary buffer at the offset specified.    The value must be between -
127 and 255.    The number is converted to an 8 bit value and stored.

Example:
BinaryPoke(binbuf, 5, -14) ;Pokes a new value into the buffer.
a=BinaryPeek(binbuf, 5) ;Finds the value of a byte.
Message("Hmmm", "Returned value is %a%")
; Value will be 242 which is (256 - 14). 242 and -14 map
; to the same 8bit number.

See Also:
Binary Operations, BinaryCopy, BinaryPeek, BinaryPeekStr, BinaryPokeStr

BinaryPokeStr
Writes a string into a binary buffer.

Syntax:
BinaryPokeStr(handle, offset, string)

Parameters:
(i) handle handle of buffer.
(i) offset offset in the buffer to store string.
(s) string string to store into buffer.

Returns:
(i)            number of bytes stored.

This function is used to write string data into a binary buffer.    There must be sufficient space in the buffer
between the offset and the allocated end of the buffer to accommodate the string.

Note:    The string parameter may be composed of any characters except the null (00) character.    If a
null character is found, it will be assumed that the string ends at that point.    If you need to store a null
character into a binary buffer, use the BinaryPoke function.

Example:
; This example writes a new device= line to SYSTEM.INI
; It is *very* fast
NewDevice = "DEVICE=COOLAPP.386"
;
; Change to the Windows Directory
DirChange(DirWindows(0))
;
; Obtain filesize and allocate binary buffers
fs1=FileSize("SYSTEM.INI")
srcbuf = BinaryAlloc(fs1)
editbuf = BinaryAlloc(fs1+100)
;
; Read existing system.ini into memory
BinaryRead(srcbuf, "SYSTEM.INI")
;
; See if this change was already installed. If so, quit
a = BinaryIndex(srcbuf, 0, "COOLAPP.386", @FWDSCAN)
if a != 0 then goto AlreadyDone
;
; Find 386Enh section.
a = BinaryIndex(srcbuf, 0, "[386Enh]", @FWDSCAN)
;
;
; Find beginning of next line (add 2 to skip over our crlf)
cuthere = BinaryIndex(srcbuf, a, @CRLF, @FWDSCAN) + 2
;
; Copy data from beginning of file to just after [386Enh}
; to the edit buffer
BinaryCopy(editbuf, 0, srcbuf, 0, cuthere)
;
; Add the device= line to the end of the edit buffer, and add a CRLF
BinaryPokeStr(editbuf,BinaryEodGet(editbuf), Strcat(NewDevice,@CRLF))
;
; Copy remaining part of source buffer to the edit buffer
a = BinaryEodGet(editbuf)

b = BinaryEodGet(srcbuf)
BinaryCopy(editbuf, a, srcbuf, cuthere, b-cuthere)
;
; Save file out to disk. Use system.tst until it is
; completely debugged
BinaryWrite(editbuf, "SYSTEM.TST")
;
; Close binary buffers
:AlreadyDone
BinaryFree(editbuf)
BinaryFree(srcbuf)

See Also:
Binary Operations, BinaryCopy, BinaryPeek, BinaryPeekStr, BinaryPoke

BinaryRead
Reads a file into a binary buffer.

Syntax:
BinaryRead(handle, filename)

Parameters:
(i) handle handle of buffer.
(s) filename file to read into buffer.

Returns:
(i)          the number of bytes read.

This function reads the entire contents of a file into a buffer then returns the number of bytes read.    The
buffer must be large enough to hold the entire file.    The file is placed into the buffer starting at offset 0.

Example:
; This example edits the Config.sys file by adding a line
; to the bottom of the file.
fs=FileSize("C:\CONFIG.SYS")
binbuf = BinaryAlloc(fs+100)
if binbuf == 0

Message("Error", "BinaryAlloc Failed")
else

BinaryRead(binbuf, "C:\CONFIG.SYS")
BinaryPokeStr(binbuf, fs, "DEVICE=C:\FLOOGLE.SYS%@crlf%")
BinaryWrite(binbuf, "C:\CONFIG.SYS")
binbuf=BinaryFree(binbuf)

endif

See Also:
Binary Operations, BinaryAlloc, BinaryFree, BinaryWrite

BinaryStrCnt
Counts the occurrences of a string in some or all of a binary buffer.

Syntax:
BinaryStrCnt(handle, start-offset, end-offset, string)

Parameters:
(i) handle handle of buffer.
(i) start-offset offset for start of search.
(i) end-offset offset for end of search.
(s string string to search for.

Returns:
(i)                  number of occurrences of string found.

This function will search all or a portion of a binary buffer for a string and will return a count of the
occurrences of the string found.    The buffer will be searched from the start-offset to the end-offset.
Note:    The string parameter may be composed of any characters except the null (00) character.    This
function cannot process a null character.

Example:
; Find number of Device, DEVICE= and device= lines in config.sys
fs1 = FileSize("C:\CONFIG.SYS")
binbuf1 = binaryalloc(fs1)
BinaryRead(binbuf1, "C:\CONFIG.SYS")
a = BinaryStrCnt(binbuf1, 0, fs1 - 1, "Device=")
b= BinaryStrCnt(binbuf1, 0, fs1 - 1, "DEVICE=")
c= BinaryStrCnt(binbuf1, 0, fs1 - 1, "device=")
BinaryFree(binbuf1)
d = a + b + c
Message("Hmmm", "Total Device= lines found in Config.Sys is %d% ")

See Also:
Binary Operations, BinaryEodGet, BinaryEodSet, BinaryIndex, BinaryPeek, BinaryPeekStr,
BinaryPoke, BinaryPokeStr

BinaryWrite
Writes a binary buffer to a file.

Syntax:
BinaryWrite(handle, filename)

Parameters:
(i) handle handle of buffer.
(s) filename file to read into buffer.

Returns:
(i)                  number of bytes written.

This function writes the contents of a binary buffer out to a file and returns the number of bytes written.   
Data written to the file starts at offset 0 in the buffer and extends to the end of data - not necessarily the
end of the buffer.    The end of data may be inspected or modified with the BinaryEodGet and
BinaryEodSet functions.

Example:
; This example edits the Config.sys file by adding a line
; to the bottom of the file.
fs=FileSize("C:\CONFIG.SYS")
binbuf = BinaryAlloc(fs+100)
if binbuf == 0

Message("Error", "BinaryAlloc Failed")
else

BinaryRead(binbuf, "C:\CONFIG.SYS")
BinaryPokeStr(binbuf, fs, "DEVICE=C:\FLOOGLE.SYS%@crlf%")
BinaryWrite(binbuf, "C:\CONFIG.SYS")
binbuf=BinaryFree(binbuf)

endif

See Also:
Binary Operations, BinaryAlloc, BinaryFree, BinaryRead

Break
The Break statement is used to exit a While, Switch, Select, or For/Next structure.

Syntax:
break

Parameters:
none

Use the Break statement to exit a While, Switch, Select, or For/Next structure.    It transfers control to
the statement immediately following the nearest enclosing EndWhile, EndSwitch, EndSelect, or Next.   
It is used to terminate loops and to exit Switch statements - usually just before the next case statement.

Example:
while (a<100)

a=a+1
if a==4 then break
b=b+1

end while

See Also:
Continue, For, While, Switch, Select

ButtonNames
Changes the names of the buttons which appear in WIL dialogs.

Syntax:
ButtonNames (OK-name, Cancel-name)

Parameters:
(s) OK-name        new name for the OK button.
(s) Cancel-name new name for the Cancel button.

Returns:
(i)                  always 1.

This function allows you to specify alternate names for the OK and/or Cancel buttons which appear in
many of the dialogs displayed by the WIL Interpreter.    Each use of the ButtonNames statement only
affects the next WIL dialog which is displayed.
You can specify a null string ("") for either the OK-name or Cancel-Name parameter, to use the default
name for that button (i.e., "OK" or "Cancel").
You can place an ampersand before the character which you want to be the underlined character in the
dialog.

Example:
ButtonNames("", "&Abort")
user = AskLine("Hello", "What is your name", "")
Message("Hello", user)

would produce:

See Also:
n/a

Call
Calls a WIL batch file as a subroutine.

Syntax:
Call (filename, parameters)

Parameters:
(s) filename the WIL batch file you are calling (including extension).
(s) parameters the parameters to pass to the file, if any, in the form "p1 p2 p3 ... pn".

Returns:
(i)                  always 0.

This function is used to pass control temporarily to a secondary WIL batch file.    The main WIL program
can optionally pass parameters to the secondary WIL batch file.    All variables are common (global)
between the calling program and the called WIL batch file, so that the secondary WIL batch file may
modify or create variables.    The secondary WIL batch file should end with a Return statement, to pass
control back to the main WIL program.
If a string of parameters is passed to the secondary WIL batch file, it will automatically be parsed into
individual variables with the names param1, param2, etc., (maximum of nine parameters).    The variable
param0 will be a count of the total number of parameters in the string.

Example:
; File MAIN.WBT
;
; This example asks for user input, their name and age,
; and then calls another WinBatch job to verify if their
; age is between 0 & 150.
;
name = AskLine("", "What is your name?", "")
age = AskLine("", "How old are you?", "")
valid = @NO
Call("chek-age.wbt", age)
If valid == @NO Then Message("", "Invalid age")
Exit

; File CHEK-AGE.WBT
;
; This subroutine checks if the age inputted is between 0 & 150.
; If this is true, a global parameter is set to a value of 1.
userage = param1
really = AskYesNo("", "%name%, are you really %userage%?")
If really == @YES

If (userage > 0) && (userage < 150)
valid = @YES

endif
endif
Return

See Also:
ParseData, Return

Ceiling
Calculates the ceiling of a value

Syntax:
Ceiling(x)

Parameters:
(f) xvalue Ceiling is calculated from.

Returns:
(f) a floating point number whose value represents the smallest integer

that is
                  greater than or equal to x. (rounds up to the nearest integer#)

Use this function to calculate the ceiling of a value.

Example:
; This example accepts a value from the user to calculate
; the ceiling and floor.
;
a=AskLine("Ceiling and Floor", "Please enter a number", "1.23")
c=Ceiling(a)
f=Floor(a)
Message("Ceiling and Floor of %a%", "Ceiling: %c% Floor: %f%")

ie. A= Ceiling=    Floor=
 25.2 26.0         25.0
 25.7 26.0         25.0
 24.9 25.0         24.0
-14.3 -14.0       -15.0

See Also:
Abs, Fabs, Floor, Min, Max

Char2Num
Converts the first character of a string to its numeric equivalent.

Syntax:
Char2Num (string)

Parameters:
(s) string any text string.    Only the first character will be converted.

Returns:
(i)                  ANSI character code.

This function returns the 8-bit ANSI code corresponding to the first character of the string parameter.
Note:    For the commonly-used characters (with codes below 128), ANSI and ASCII characters are
identical.

Example:
; Show the hex equivalent of entered character
inpchar = AskLine("ANSI Equivalents", "Char:", "")
ansi = StrSub(inpchar, 1, 1)
ansiequiv = Char2Num(InpChar)
Message("ANSI Codes", "%ansi% => %ansiequiv%")

See Also:
IsNumber, Num2Char

ClipAppend
Appends a string to the Clipboard.

Syntax:
ClipAppend (string)

Parameters:
(s) string text string to add to Clipboard.

Returns:
(i)                  @TRUE if string was appended;
                  @FALSE if Clipboard ran out of memory.

Use this function to append a string to the Windows Clipboard.    The Clipboard must either contain text
data or be empty for this function to succeed.

Example:
; The code below will append 2 copies of the
; Clipboard contents back to the Clipboard, resulting
; in 3 copies of the original contents with a CR/LF
; between each copy.
a = ClipGet()
crlf = StrCat(Num2Char(13), Num2Char(10))
ClipAppend(crlf)
ClipAppend(a)
ClipAppend(crlf)
ClipAppend(a)

See Also:
ClipGet, ClipPut

ClipGet
Returns the contents of the Clipboard.

Syntax:
ClipGet ()

Parameters:
(none)

Returns:
(s) Clipboard contents.

Use this function to copy text from the Windows Clipboard into a string variable.
Note:    If the Clipboard contains an excessively large string a (fatal) out of memory error may occur.

Example:
; The code below will convert Clipboard contents to
; uppercase
ClipPut(StrUpper(ClipGet()))
a = ClipGet()
Message("UPPERCASE Clipboard Contents", a)

See Also:
ClipAppend, ClipPut

ClipPut
Copies a string to the Clipboard.

Syntax:
ClipPut (string)

Parameters:
(s) string any text string.

Returns:
(i)                  @TRUE if string was copied;

                  @FALSE if Clipboard ran out of memory.

Use this function to copy a string to the Windows Clipboard.    The previous Clipboard contents will be
lost.

Example:
; The code below will convert Clipboard contents to
; lowercase
ClipPut(StrLower(ClipGet()))
a = ClipGet()
Message("lowercase Clipboard Contents", a)

See Also:
ClipAppend, ClipGet, SnapShot

Continue
The Continue statement in a While or For loop causes a transfer of control back to the beginning of the
loop so that the controlling expressions can be re-evaluated.    In a Switch or Select statement, execution
of a particular case is terminated and a search for the next matching case is initiated.

Syntax:
Continue

Parameters:
none

In While or For statements, use the Continue statement to immediately stop execution and re-evaluate
the While or For statement to determine if the loop should be repeated.    In For statements, the index
variable is also incremented.    In Switch or Select statements, if a case is being executed, execution of
that case is terminated, and a search is started for another case statement whose expression evaluates
to the same integer as the expression controlling the Switch or Select statement.

Example:
a=0
b=0
while (a<100)

a=a+1
if a>10 then continue
b=b+1

end while

See Also:
Break, For, While, Switch, Select

Cos
Calculates the cosine.

Syntax:
Cos(x)

Parameters:
(f) xangle in radians.

Returns:
(f) The Cos function returns the cosine of x.

Calculates the cosine.    If x is large, a loss in significance in the result or a significance error may occur.
Note:    To convert an angle measured in degrees to radians, simply multiply by the constant @Deg2Rad.

Example:
real=AskLine("Cosine", "Enter an angle in degrees (0 to 360)", "45")
answer=cos(real * @Deg2Rad)
Message("Arccos of %real% degrees is",answer)

See Also:
Acos, Asin, Atan, Cosh, Sin, Tan

Cosh
Calculates the hyperbolic cosine.

Syntax:
Cosh(x)

Parameters:
(f) xangle in radians.

Returns:
(f) The Cosh function returns the hyperbolic cosine of x.

Calculates the hyperbolic cosine.    If the result is too large, the function will return an error.
Note:    To convert an angle measured in degrees to radians, simply multiply by the constant @Deg2Rad.

Example:
real=AskLine("Cosh", "Enter an angle in degrees (0 to 360)", "45")
answer=cosh(real * @Deg2Rad)
Message("Hyperbolic cosine of %real% degrees is",answer)

See Also:
Acos, Asin, Atan, Cos, Sin, Sinh, Tan, Tanh

CurrentFile {*M}
Returns the selected filename.

Syntax:
CurrentFile ()

Parameters:
(none)

Returns:
(s) currently-selected file's name.

When a WIL menu shell displays the files in the current directory, one of them may be "selected".    This
function returns the name of that file, if any.
This is different than a "highlighted" file.    When a file is highlighted, it shows up in inverse video (usually
white-on-black).    To find the filenames that are highlighted, (see FileItemize).
Note: This command is not part of the WIL Interpreter package, but is documented here because it has
been implemented in many of the shell or file manager-type applications which use the WIL Interpreter.

Example:
; ask which program to run (default = current file)
thefile = AskLine("Run It", "Program:", CurrentFile())
Run(thefile, "")

See Also:
CurrentPath, DirGet, DirItemize, FileItemize

CurrFilePath {*M}
Returns the full path plus filename of the currently-selected file.

Syntax:
CurrFilePath()

Parameters:
(none)

Returns:
(s) path and filename of currently-selected file.

Example:
;Get the filename before changing directories.
myfile =CurrFilePath()
DirChange("c:\word")
Run("winword.exe", myfile)

See Also:
CurrentFile, CurrentPath

CurrentPath {*M}
Returns path of the selected filename.

Syntax:
CurrentPath ()

Parameters:
(none)

Returns:
(s) path of currently-selected file.

When a WIL menu shell displays the files in the current directory, one of them may be "selected."    This
function returns the drive and path of that file, if any.
This is different than a "highlighted" file.    When a file is highlighted, it shows up in inverse video (usually
white-on-black).    To find the filenames that are highlighted, (see FileItemize).
Note: This command is not part of the WIL Interpreter package, but is documented here because it has
been implemented in many of the shell or file manager-type applications which use the WIL Interpreter.

Example:
; Builds full filename before changing directories.
myfile = StrCat(CurrentPath(), CurrentFile())
DirChange("c:\word")
Run("winword.exe", myfile)

See Also:
CurrentFile, DirGet, FilePath

DateTime
Provides the current date and time.
Note:    This function has been replaced by TimeDate, but will still work in this version for compatibility
reasons.    See TimeDate for more information.

DDEExecute
Sends commands to a DDE server application.

Syntax:
DDEExecute (channel, [command string])

Parameters:
(i) channel same integer that was returned by DDEInitiate.
(s) command stringone or more commands to be executed by the
......... server app.

Returns:
(i) @TRUE if successful; @FALSE if unsuccessful.

Use the DDEInitiate function to obtain a channel number.
In order to use this function successfully, you will need appropriate documentation for the server
application you wish to access, which must provide information on the DDE functions that it supports and
the correct syntax to use.

Example:
Run("report.exe", "sales.dat") ;Run Report
channel = DDEInitiate("report", "YTD");Initialize DDE
If channel != 0 ;If DDE OK

;Execute DDE Command
result = DDEExecute(channel, '[Act:p="ABCco", t=580.00]')
DDETerminate(channel) ;Close DDE
WinClose("Reports") ;Close Report
If result == @FALSE

Message("DDE Execute", "Failed")
else

Message("DDE Execute", "Operation complete")
Exit

endif
else

Message("DDE operation unsuccessful", "Check your syntax")
endif

See Also:
DDEInitiate, DDEPoke, DDERequest, DDETerminate, DDETimeout

DDEInitiate
Opens a DDE channel.

Syntax:
DDEInitiate (app name, topic name)

Parameters:
(s) app name name of the application (without the EXE extension).
(s) topic name name of the topic you wish to access.

Returns:
(i) communications channel, or 0 on error.

This function opens a DDE communications channel with a server application.    The communications
channel can be subsequently used by the DDEExecute, DDEPoke, and DDERequest functions.    You
should close this channel with DDETerminate when you are finished using it.    If the communications
channel cannot be opened as requested, DDEInitiate returns a channel number of 0.
You can call DDEInitiate more than once, in order to carry on multiple DDE conversations (with multiple
applications) simultaneously.
In order to use this function successfully, you will need appropriate documentation for the server
application you wish to access, which must provide information on the DDE functions that it supports and
the correct syntax to use.

Example:
Run("report.exe", "sales.dat") ;Run Report
channel = DDEInitiate("report", "YTD");Initialize DDE
If channel != 0 ;If DDE OK

;Execute DDE Command
result = DDEExecute(channel, '[Act:p="ABCco", t=580.00]')
DDETerminate(channel) ;Close DDE
WinClose("Reports") ;Close Report
If result == @FALSE

Message("DDE Execute", "Failed")
else

Message("DDE Execute", "Operation complete")
Exit

endif
else

Message("DDE operation unsuccessful", "Check your syntax")
endif

See Also:
DDEExecute, DDEPoke, DDERequest, DDETerminate, DDETimeout

DDEPoke
Sends data to a DDE server application.

Syntax:
DDEPoke (channel, item name, item value)

Parameters:
(i) channel same integer that was returned by DDEInitiate.
(s) item name identifies the type of data being sent.
(s) item value actual data to be sent to the server.

Returns:
(i) @TRUE if successful; @FALSE if unsuccessful.

Use the DDEInitiate function to obtain a channel number.
In order to use this function successfully, you will need appropriate documentation for the server
application you wish to access, which must provide information on the DDE functions that it supports and
the correct syntax to use.

Example:
Run("reminder.exe", "") ;Run Reminder
channel = DDEInitiate("Reminder", "items") ;Initialize DDE
If channel != 0 ;If DDE OK

;Do DDE Poke
result = DDEPoke(channel, "all", "11/3/92 Misc Vote!!!!")
DDETerminate(channel) ;Close DDE
WinClose("Reminder") ;Close Application
If result == @FALSE

Message("DDE Poke", "Failed")
else

Message("DDE Poke", "Operation complete")
Exit

endif
else

Message("DDE operation unsuccessful", "Check your syntax")
endif

See Also:
DDEExecute, DDEInitiate, DDERequest, DDETerminate, DDETimeout

DDERequest
Gets data from a DDE server application.

Syntax:
DDERequest (channel, item name)

Parameters:
(i) channel same integer that was returned by DDEInitiate.
(s) item name identifies the data to be returned by the server.

Returns:
(s) information from the server if successful, "***NACK***" on failure.

Use the DDEInitiate function to obtain a channel number.
In order to use this function successfully, you will need appropriate documentation for the server
application you wish to access, which must provide information on the DDE functions that it supports and
the correct syntax to use.

Example:
Run("report.exe", "sales.dat") ;Run Report
channel = DDEInitiate("report", "YTD");Initialize DDE
If channel != 0 ;If DDE OK

;Do DDE Request
result = DDERequest(channel, 'TotalSales')
DDETerminate(channel) ;Close DDE
WinClose("Reports") ;Close Report
If result == @FALSE

Message("DDE Execute", "Failed")
else

Message("DDE Request", "Total Sales is %result%")
Exit

endif
else

Message("DDE operation unsuccessful", "Check your syntax")
endif

See Also:
DDEExecute, DDEInitiate, DDEPoke, DDETerminate, DDETimeout

DDETerminate
Closes a DDE channel.

Syntax:
DDETerminate (channel)

Parameters:
(i) channel same integer that was returned by DDEInitiate.

Returns:
(i) always 1.

This function closes a communications channel that was opened with DDEInitiate.

Example:
Run("report.exe", "sales.dat") ;Run Report
channel = DDEInitiate("report", "YTD");Initialize DDE
If channel != 0 ;If DDE OK

;Do DDE Request
result = DDERequest(channel, 'TotalSales')
DDETerminate(channel) ;Close DDE
WinClose("Reports") ;Close Report
If result == @FALSE

Message("DDE Execute", "Failed")
else

Message("DDE Request", "Total Sales is %result%")
Exit

endif
else

Message("DDE operation unsuccessful", "Check your syntax")
endif

See Also:
DDEExecute, DDEInitiate, DDEPoke, DDERequest, DDETimeout

DDETimeout
Sets the DDE timeout value.

Syntax:
DDETimeout (value)

Parameters:
(i) value DDE timeout time.

Returns:
(i) previous timeout value.

Sets the timeout time for subsequent DDE functions to specified value in milliseconds (1/1000 second).   
Default is 3000 milliseconds (3 seconds).    If the time elapses with no response, the WIL Interpreter will
return an error.    The value set with DDETimeout stays in effect until changed by another DDETimeout
statement or until the WIL program ends, whichever comes first.

Example:
DDETimeOut(5000) Set Timeout to 5 secs
Run("report.exe", "sales.dat") ;Run Report
channel = DDEInitiate("report", "YTD");Initialize DDE
If channel != 0 ;If DDE OK

;Do DDE Request
result = DDERequest(channel, 'SortByCity')
DDETerminate(channel) ;Close DDE
WinClose("Reports") ;Close Report
If result == @FALSE

Message("DDE Execute", "Failed")
else

Message("DDE Request", "Database sorted")
Exit

endif
else

Message("DDE operation unsuccessful", "Check your syntax")
endif

See Also:
DDEExecute, DDEInitiate, DDEPoke, DDERequest, DDETerminate

Debug
Controls the debug mode.

Syntax:
Debug (mode)

Parameters:
(i) mode @ON or @OFF

Returns:
(i) previous debug mode

Use this function to turn the debug mode on or off.    The default is @OFF.
When debug mode is on, the WIL Interpreter will display the statement just executed, its result (if any),
any error conditions, and the next statement to execute.

The statements are displayed in a special dialog box which gives the user four options:    Next, Run,
Cancel and Show Var.

Next executes the next statement and remains in debug mode.
Run exits debug mode and runs the rest of the program normally.
Cancel terminates the current WIL program.
Show Var displays the contents of a variable whose name the user entered in the edit box.

Example:
Debug(@ON)
a = 6
q = AskYesNo("Testing Debug Mode", "Is the Pope Catholic")
Debug(@OFF)
b = a + 4

produces:

... then, if the user presses Next:

... and presses Next again:

... and then presses Yes:

etc.    (If the user had pressed No it would have said "VALUE=>0".)

See Also:
ErrorMode, LastError

DebugData
Writes data via the Windows OutputDebugString function to the default destination.

Syntax:
DebugData(string, string)

Parameters:
(s) string desired data.
(i) string more desired data.

Returns:
(i) always zero

Writes data via the Windows OutputDebugString function to the default destination.    The function is
generally only useful if you have the proper tools and hardware to debug Windows applications.    In
general, for standard retail Windows, the default destination is COM1.    The Windows SDK provides tools
(DBWIN) to allow you to capture the debug data to an alternate device or to a special window.

Use of this function in standard retail Windows may interfere with any device, such as a mouse or modem
connected to COM1.

For users without sophisticated (and expensive) debugging tools, the WIL Debug function and the WIL
Message function work incredibly well.

Example:
a=45
DebugData("Value of a is", a)
; or for those without expensive tools
Message("Value of a is", a)

See Also:
Debug, Message

Decimals
Sets the number of decimal places to be used when displaying floating point numbers.

Syntax:
Decimal(places)

Parameters:
(i) places number of decimals to be displayed.

Returns:
(i) previously set value.

Use this function to set the number of decimal places to be displayed when viewing a floating point
number.    The floating point number will be rounded to the specified number of decimals.    If you are
doing computations on US currency -- mortgage or financial calculations -- use Decimals(2).    Use -1 for
full precision, dropping of trailing zeros.

Example:
a=1.23456789
for d = 0 to 10

Decimals(d)
Message("Decimals = %d%", a)

Next

See Also:
<none>

Delay
Pauses execution for a specified amount of time.

Syntax:
Delay (seconds)

Parameters:
(i) seconds integer seconds to delay (1 - 3600)

Returns:
(i) always 1

This function causes the currently-executing WIL program to be suspended for the specified period of
time.    Seconds must be an integer between 1 and 3600.    Smaller or larger numbers will be adjusted
accordingly.

Example:
Message("Wait", "About 15 seconds")
Delay(15)
Message("Hi", "I'm Baaaaaaack")

See Also:
Yield, TimeDelay, TimeWait

Dialog
Displays a user-defined dialog box.

Syntax:
Dialog (dialog-name)

Parameters:
(s) dialog-name name of the dialog box.

Returns:
(i) value of the pushbutton used to close the dialog box.

Note:
The DialogEditor has been included to create your dialogs.    The following information is for
technical reference only.

The text which follows describes how to define a dialog box for use by the Dialog function.    Please refer
to your product-specific documentation for any additional information which may supplement or
supersede that which is described here.

Before the Dialog function is called, you must include a section of code in your WIL program which will
define the characteristics of the dialog box to be displayed.    First of all, the dialog must be declared, and
a name must be assigned to it.    This is done with a line of the following format:

<name>Format="WWWDLGED,5.0"

where <name> is the dialog name.    "WWWDLGED,5.0" is the hard coded format which identifies this
dialog box as using the WIL interpreter Version 5.0. This should follow the standard rules for WIL variable
names, and may not exceed 17 characters in length.

Next, the format of the dialog box is defined, as follows:
<name>X=<x-origin>
<name>Caption="<box-caption>"
<name>Y=<y-origin>
<name>Width=<box-width>
<name>Height=<box-height>
<name>NumControls=<ctrl-count>

where:
<name> is the internal name of the dialog box, as described above.
<box-caption> is the text which will appear in the title bar of the dialog box.
<x-origin> is the horizontal coordinate of the upper left corner of dialog box.
<y-origin> is the vertical coordinate of the upper left corner of the dialog box.
<box-width> is the width of the dialog box.
<box-height> is the height of the dialog box.
<ctrl-count> is the total number of controls in the dialog box (see below).

Finally, you will need to define the objects, or controls, which will appear inside the dialog box.    Each
control is defined with a line of the following format:

<name>nn=`x,y,width,height,type,var,"text",value`

where:
nn is the ordinal position of the control in the dialog box (starting with 1).
<name> is the name of the dialog box, as described above.
x is the horizontal coordinate of the upper left corner of the control.
y is the vertical coordinate of the upper left corner of the control.
width is the width of the control.
height is the height of the control.    [This should be DEFAULT for all controls except
file-list boxes and item boxes.]
type is the type of control, (see below).
var is the name of the variable affected by the control.
text is the description which will be displayed with the control.    [Use a null string
("") if the control should appear blank.]
value is the value returned by the control.    [Use only for pushbuttons, radiobuttons,
and checkboxes.]

Note: The numbers used for "x-origin", "y-origin", "box-width", "box-height", "x", "y", "width," and "height"
are expressed in a unit of measure known as "Dialog Units."    Basically speaking:

1 width unit =      1/4 width of system font.
1 height unit =      1/4 width of system font.
4 units wide =      Average width of the system font.
8 units high =      Average height of the system font.

There are seven types of controls available:

PUSHBUTTON A button, which can be labeled and used as desired.    When the user
presses a pushbutton, the Dialog function will exit and will return the
"value" assigned to the button which was pressed. Therefore, you
should assign a unique "value" to each pushbutton in a dialog.
Pushbuttons with values of 0 and 1 have special meaning. If the user
presses a pushbutton which has a value of 0, the WIL program will be
terminated (or will go to the label marked ":CANCEL", if one is defined);
this corresponds to the behavior of the familiar Cancel button. A
pushbutton with a value of 1 is the default pushbutton, and will be
selected if the user presses the Enter key; this corresponds to the
behavior of the familiar OK button. For pushbuttons, "var" should be
DEFAULT. Note: Every dialog box must contain at least one pushbutton.

RADIOBUTTON One of a group of circular buttons, only one of which can be "pressed"
(filled in) at any given time. You can have more than one group of radio
buttons in a dialog box, but each group must use a different "var".
When the Dialog function exits, the value of "var" will be equal to the
"value" assigned to the radiobutton which is pressed. Therefore, you
should assign a unique "value" to each radiobutton in a group.
Normally, when a dialog box opens, the default radiobutton in each
group (i.e., the one which is pressed) is the one which has a value of 1.

You can change this by assigning a different value to "var" before
calling the Dialog function.

CHECKBOX A square box, in which an "X" appears when selected.    A check box
can have a value of 0 (unchecked) or 1 (checked). Each checkbox in a
dialog should use a unique "var". Normally, when a dialog box opens,
every checkbox defaults to being unchecked. You can change this by
assigning a value of 1 to "var" before calling the Dialog function. Note
for advanced users only: it is possible to define a group of checkboxes
which have the same "var". Each box in the group must have a unique
value, which must be a power of 2 (1, 2, 4, etc.). The user can check
and uncheck individual checkboxes in the group, and when the Dialog
function exits the value of "var" will be equal to the values of all the
checkboxes in the group, combined using the bitwise OR operator (|).

EDITBOX A box in which text can be typed. Whatever the user types in the
editbox will be assigned to the variable "var". Normally, when a dialog
box opens, editboxes are empty. You can change this by assigning a
value to the string variable "var" before calling the Dialog function, in
which case the value of "var" will be displayed in the editbox.   
Note:    Variable names that begin with "PW_", will be treated as
password fields causing asterisks to be echoed for the actual
characters that the user types.

STATICTEXT Descriptive text, which does not change. This can be used to display
titles, instructions, etc. For static text controls, "var" should be
DEFAULT.

VARYTEXT Variable text. The current value of "var" is displayed.    If "var" is not
assigned a value in the WIL program before calling the Dialog
function, the "text" field of the control definition will be used.

ITEMBOX A selection list box. The variable "var" is assumed to contain a tab
delimited list. The list is loaded into the list box in the original order
(Use the ItemSort function is a sorted list is desired.). The user may
choose none, one, or more items in the list. When the dialog box is
closed, the selected items are returned via the "var" variable as a tab
delimited list. If the user selects more than 99 items an error will occur.

FILELISTBOX A file selection list box. This will allow the user to select a file from any
directory or drive on the system. The value of "var" will be set to the
selected filename; if you need to know what directory the file is in, use
the DirGet function after the Dialog function exits. Normally, when a
dialog box opens, filelist boxes display files matching a filemask of "*.*"
(i.e., all files). You can change this by assigning a different filemask
value to the string variable "var" before calling the Dialog function.
Normally, if a dialog contains a filelistbox, you must select a file from
the list box before you can exit the dialog. You can change this
behavior by placing the statement IntControl(4, 0, 0, 0, 0) anywhere
in your WIL program prior to the Dialog statement. In combination
with the filelistbox, you can include an EDITBOX control which has the
same "var" name as the filelistbox. If you do, the user can type a
filemask into the editbox (eg., "*.TXT"), which will cause the filelistbox
to be redrawn to display only those files which match the specified
filemask. Also in combination with the filelistbox, you can include a

VARYTEXT control which has the same "var" name as the filelistbox. If
you do, this control will show the name of the directory currently
displayed in the filelistbox. For filelistboxes, "text" should be DEFAULT.
Note: You can have only one filelistbox in a dialog.

You can have a maximum of 100 controls in a dialog.

Example:
; Define the dialog format
EditFormat=`WWWDLGED,5.0`
EditCaption=`Edit INI File`
EditX=80
EditY=40
EditWidth=150
EditHeight=170
EditNumControls=14
Edit01=`5,3,40,DEFAULT,STATICTEXT,DEFAULT,"&Directory:"`
Edit02=`42,3,100,DEFAULT,VARYTEXT,editfile,""`
Edit03=`5,15,80,DEFAULT,EDITBOX,editfile,""`
Edit04=`5,30,40,DEFAULT,STATICTEXT,DEFAULT,"&File:"`
Edit05=`5,43,80,125,FILELISTBOX,editfile,DEFAULT`
Edit06=`98,17,44,DEFAULT,CHECKBOX,backup,"Make &BAK",1`
Edit07=`98,40,40,DEFAULT,RADIOBUTTON,state,"No&rmal",1`
Edit08=`98,52,40,DEFAULT,RADIOBUTTON,state,"&Zoomed",2`
Edit09=`98,64,40,DEFAULT,RADIOBUTTON,state,"&Iconized",3`
Edit10=`95,82,44,DEFAULT,PUSHBUTTON,DEFAULT,"&Notepad",1`
Edit11=`95,98,44,DEFAULT,PUSHBUTTON,DEFAULT,"&WinEdit",2`
Edit12=`95,114,44,DEFAULT,PUSHBUTTON,DEFAULT,"Wri&te",3`
Edit13=`95,130,44,DEFAULT,PUSHBUTTON,DEFAULT,"WinW&ord",4`
Edit14=`91,151,52,DEFAULT,PUSHBUTTON,DEFAULT,"&Cancel",0`

editfile = "*.INI" ; Set default mask for filelistbox
backup = 1 ; Set the checkbox to be on by default
state = 2 ; Set the 2nd radio button as the default

; Display the dialog, and wait for the user to press one of the
; pushbuttons. The variable "retval" will be equal to the value of
; whichever pushbutton is pressed
while @TRUE
 retval = Dialog("Edit")
 ; If the user didn't select a valid file, re-display the dialog
 If FileExist(editfile) Then break
endwhile

; Find out if the checkbox was checked, and proceed accordingly
If backup == 1
 bakfile = StrCat(FileRoot(editfile), ".BAK")
 FileCopy(editfile, bakfile, @TRUE)
endif
; Find out which radio button was pressed, and set the variable

; "runcmd" to the name of the appropriate member of the Run "family"
Switch state
 case 1
 runcmd = "Run"
 break
 case 2
 runcmd = "RunZoom"
 break
 case 3
 runcmd = "RunIcon"
 break
endswitch

; Set the variable "editor", based on the pushbutton that was pressed
Switch retval
 case 1
 editor = "notepad.exe"
 break
 case 2
 editor = "c:\win\edit\winedit.exe"
 break
 case 3
 editor = "write.exe"
 break
 case 4
 editor = "c:\word\winword.exe"
 break
endswitch

; Execute the appropriate command (using variable substitution)
%runcmd%(editor, editfile)
Exit

:cancel
; If we got here, it means the user pressed the Cancel pushbutton
Message(EditCaption, "Operation cancelled")

produces:

See Also:
AskLine, AskPassword, AskYesNo, IntControl, AskItemList

DirAttrGet
Gets directory attributes.

Syntax:
DirAttrGet([d:]path)

Parameters:
(s) [d:]path directory pathname whose attributes you want to determine.

Returns:
(s) the attributes of the specified directory pathname.

Returns attributes for the specified directory, in a string of the form "RASH".    This string is composed of
four individual attribute characters, as follows:

Char Symbol Meaning
1 R Read-only ON
2 A Archive ON
3 S System ON
4 H Hidden ON

A hyphen in any of these positions indicates that the specified attribute is OFF.    For example, the string "-
A-H" indicates a directory which has the Archive and Hidden attributes set.

Example:
dir = "c:\temp"
attr = DirAttrGet(dir)
Message("Attributes of Directory, %dir", attr)

See Also:
DirAttrSet, FileAttrGet, FileAttrSet, FileTimeGet

DirAttrSet
Sets directory attributes.

Syntax:
DirAttrSet(dir-list, settings)

Parameters:
(s) dir-list a list of one or more sub-directory names.
(s) settings new attribute settings for the directories.

Returns:
(s) always 0.

The attribute string consists of one or more of the following characters (an upper case letter turns the
specified attribute ON, a lower case letter turns it OFF):

Symbol Meaning
R read only ON
A archive ON
S system ON
H hidden ON
r read only OFF
a archive OFF
s system OFF
h hidden OFF

Example:
DirAttrSet("c:\temp", "rASh")

See Also:
DirAttrGet, FileAttrGet, FileAttrSet , FileTimeGet, FileTimeTouch

DirChange
Changes the current directory.    Can also log a new drive.

Syntax:
DirChange ([d:]path)

Parameters:
(s) [d:] an optional disk drive to log onto.
(s) path the desired path.

Returns:
(i) @TRUE if directory was changed;

@FALSE if the path could not be found.

Use this function to change the current working directory to another directory, either on the same or a
different disk drive.

Example:
DirChange("c:\")
a = AskFileText("Your CONFIG.SYS", "config.sys", @unsorted, @single)
Message("Contents of selected line, if any", a)

See Also:
DirExist, DirGet, DirHome, LogDisk

DirExist
Tests for the existence of a directory.

Syntax:
DirExist(pathname)

Parameters:
(s) pathname complete drive and path.

Returns:
(i) @TRUE if the directory exists;

@FALSE if it doesn't exist or if the pathname is invalid.

You can use this function to determine whether a specified drive is valid by checking for the existence of
the root directory on that drive.

Examples:
; This example checks to see if a directory c:\wp exists. If it ;doesnt one is
created.
wpdir = "c:\wp"
If !DirExist(wpdir) Then DirMake(wpdir)
DirChange(wpdir)

; This section asks the user to input a drive, and then checks its
; existence.
while @TRUE ; Loop forever, until break or exit

drive = AskLine("Run Excel", "Enter a drive letter", "")
If drive == "" Then Exit
drive = StrSub(drive, 1, 1)
If DirExist("%drive%:\") then Break

endwhile
Message("Selected Drive", drive)

See Also:
DirChange, DirMake, DirRemove, DirRename, AppExist, FileExist, DiskExist

DirGet
Gets the current working directory.

Syntax:
DirGet ()

Parameters:
(none)

Returns:
(s) current working directory.

Use this function to determine which directory we are currently in.    It's especially useful when changing
drives or directories temporarily.

Example:
; Get, then restore current working directory
origdir = DirGet()
DirChange("c:\")
FileCopy("config.sys", "%origdir%xxxtemp.xyz", @FALSE)
DirChange(origdir)

See Also:
CurrentFile, CurrentPath, DirHome, DirWindows

DirHome
Returns directory containing the WIL Interpreter's executable files.

Syntax:
DirHome ()

Parameters:
(none)

Returns:
(s) pathname of the home directory.

Use this function to determine the directory where the current WIL Interpreter's executable files are
stored.

Example:
a = DirHome()
Message("WIL Executable is in ", a)

See Also:
DirGet, DirWindows

DirItemize
Returns a space-delimited list of directories.

Syntax:
DirItemize (dir-list)

Parameters:
(s) dir-list a string containing a set of sub-directory names, which may be

wildcarded.
Returns:

(s) list of directories.

This function compiles a list of sub-directories and separates the names with spaces.
This is especially useful in conjunction with the AskItemList function, which enables the user to choose
an item from such a space-delimited list.
DirItemize("*.*") returns all sub-directories under the current directory.
Note: Some shell or file manager applications using the WIL Interpreter allow an empty string ("") to be
used as the "dir-list" parameter, in which case all sub-directories highlighted in the file display are
returned.    However, if there are any directory names or wildcards in the string, all sub-directories
matching the pathnames are returned, regardless of which ones are highlighted.
Note:    In the 32-bit version of WIL, the "default" file delimiter used to delimit lists of files and directories,
has been changed to a TAB.    In the 16-bit version of WIL, the "default" delimiter has not changed, and
remains a space.    We have added the ability to change the file delimiter to a character of your own
choosing, using IntControl 29.

Example:
a = DirItemize("*.*")
AskItemList("Directories", a, " ", @unsorted, @single)

See Also:
CurrentFile, FileItemize, AskItemList, AskFileText, WinItemize

DirMake
Creates a new directory.

Syntax:
DirMake ([d:]path)

Parameters:
(s) [d:] the desired disk drive.
(s) path the path to create.

Returns:
(i) @TRUE if the directory was successfully created;

@FALSE if it wasn't.

Use this function to create a new directory.

Example:
DirMake("c:\xxxstuff")

See Also:
DirExist, DirRemove, DirRename

DirRemove
Removes a directory.

Syntax:
DirRemove (dir-list)

Parameters:
(s) dir-list a space-delimited list of directory pathnames.

Returns:
(i) @TRUE if the directory was successfully removed;

@FALSE if it wasn't.

Use this function to delete directories.    You can delete one or more at a time by separating directory
names with spaces.    You cannot, however, use wildcards.
Note:    In the 32-bit version of WIL, the "default" file delimiter used to delimit lists of files and directories,
has been changed to a TAB.    In the 16-bit version of WIL, the "default" delimiter has not changed, and
remains a space.    We have added the ability to change the file delimiter to a character of your own
choosing, using IntControl 29.

Examples:
DirRemove("c:\xxxstuff")

DirRemove("tempdir1 tempdir2 tempdir3")

See Also:
DirExist, DirMake, DirRename

DirRename
Renames a directory.

Syntax:
DirRename ([d:]oldpath, [d:]newpath)

Parameters:
(s) oldpath existing directory name, with optional drive.
(s) newpath new name for directory.

Returns:
(i) @TRUE if the directory was successfully renamed;

@FALSE if it wasn't.

Example:
DirRename("c:\temp", "c:\work")

See Also:
DirExist, DirMake, DirRemove

DirWindows
Returns the name of the Windows or Windows System directory.

Syntax:
DirWindows (request#)

Parameters:
(i) request# see below.

Returns:
(s) directory name.

This function returns the name of either the Windows directory or the Windows System directory,
depending on the request# specified.

Req# Return value
0 Windows directory
1 Windows System directory

Example:
DirChange(DirWindows(0))
files=FileItemize("*.ini")
ini = AskItemList("Select file", files, " ",@unsorted, @single)
Run("notepad.exe", ini)

See Also:
DirGet, DirHome

DiskExist
Tests for the existence of a drive.

Syntax:
DiskExist(driveletter)

Parameters:
(s) driveletter drive being tested.

Returns:
(i) @TRUE if the drive was found;

@FALSE if the drive was not found.

Use this function to test for the existence of a specific disk drive.

Example:
b="A:"
a=DiskExist(b)
if a

Message("Directory Exists", b)
else

Message("Directory Does Not Exist", b)
endif

See Also:
AppExist, FileExist, DirExist, DiskScan, DiskFree, LogDisk

DiskFree
Finds the total space available on a group of drives.

Syntax:
DiskFree (drive-list)

Parameters:
(s) drive-list one or more drive letters, separated by spaces.

Returns:
(i) the number of bytes available on all the specified drives.

This function takes a string consisting of drive letters, separated by spaces.    Only the first character of
each non-blank group of characters is used to determine the drives, so you can use just the drive letters,
or add a colon (:), or add a backslash (\), or even a whole pathname, and still get a perfectly valid result.

Example:
size = DiskFree("c d")
Message("Space Available on C: and D:", size)

See Also:
DiskScan, FileSize

DiskSize
Finds the total space available on a group of drives.

Syntax:
DiskSize (drive-list)

Parameters:
(s) drive-list one or more drive letters, separated by spaces.

Returns:
(i) the total size of a selected disk.

This function takes a string consisting of drive letters, separated by spaces.    Only the first character of
each non-blank group of characters is used to determine the drives, so you can use just the drive letters,
or add a colon (:), or add a backslash (\), or even a whole pathname, and still get a perfectly valid result.   
Results larger than 2 gigabytes will be returned as a floating point number.

Example:
size = DiskSize("c")
Message("Size of C:", size)

See Also:
DiskScan, FileSize

DiskScan
Returns list of drives.

Syntax:
DiskScan (request#)

Parameters:
(i) request# see below.

Returns:
(s) drive list.

Scans disk drives on the system, and returns a space-delimited list of drives of the type specified by
request#, in the form "A: B: C: D: ".
The request# is a bitmask, so adding the values together (except for 0) returns all drive types specified;
eg., a request# of 3 returns floppy plus local hard drives.

Req# Return value
    0 List of unused disk IDs
    1 List of removable (floppy) drives
    2 List of local fixed (hard) drives
    4 List of remote (network) drives
    8 CD-ROM      (32 bit versions of WIL only)
16 RamDisk    (32 bit version of WIL only)

Note:    In the 32-bit version of WIL, the "default" file delimiter used to delimit lists of files and directories,
has been changed to a TAB.    In the 16-bit version of WIL, the "default" delimiter has not changed, and
remains a space.    We have added the ability to change the file delimiter to a character of your own
choosing, using IntControl 29.

Example:
hd = DiskScan(2)
Message("Hard drives on system", hd)

See Also:
DiskFree, LogDisk

Display
Displays a message to the user for a specified period of time.

Syntax:
Display (seconds, title, text)

Parameters:
(i) seconds seconds to display the message (1-3600).
(s) title title of the window to be displayed.
(s) text text of the window to be displayed.

Returns:
(i) @TRUE if terminated by user;

@FALSE otherwise.

Use this function to display a message for a few seconds, and then continue processing without user
input.    Seconds must be an integer between 1 and 3600.    Smaller or larger numbers will be adjusted
accordingly.

The user can make the displayed message disappear before the designated time has elapsed by clicking
a mouse button, or by pressing any key.    If the user terminates the function in this manner, it will return a
value of @TRUE; otherwise, it will return @FALSE.

Example:
Display(3, "Current window is", WinGetActive())

which produces something like this:

See Also:
Message, Pause

DllCall
Calls an external DLL.

Syntax:
DllCall(dllname, returntype:epname, paramtype:parameter [paramtype:parameter ...])

Parameters:
(s) dllname The name of the Dll to be called, or a handle returned by the DllLoad

function.
(t) returntype: Type of value the Dll entry point will return (see below).
(s) epname Entry point name into the Dll.
(t) paramtype Type of parameter (see below).
(?) parameters Parameters as required by the entry    point.

Returns:
Value returned by the DllCall depends on the external Dll.    It may be either a integer or a
string.    See discussion below.

The DllCall function is unlike all other WIL functions.    It is designed to allow sophisticated users to either
write their own extensions to the WIL language (using the Windows SDK), to call third party Dlls, or to
access Windows APIs directly.

In order to use this function properly, a little background is necessary.    There exists a number of very
specific reasons one would want to call an external DLL to process some code.    Examples may include
calling Dlls to interface with certain hardware devices, to perform special compute-intensive algorithms, or
to perform a series of functions not possible using the WIL language.    In many cases, the user has no
control over the DLLs to be called, so that the WIL DllCall statement must be able to call a wide variety of
Dlls, to be able to pass an assortment of different parameter types, and to be able to process a number of
different return values.

For this reason, the DllCall syntax is complicated and initially confusing.    Use of the DllCall requires
detailed understanding of Windows programming and complete documentation for the Dll and the Dll
entry    point being called.    If you need tech support help with the DllCall statement, you must fax
pertinent documentation before calling for help.

To call an external Dll, the user must first determine the following information:
1) Name of the DLL.
2) Entry point name of the desired function within the Dll.
3) Type of the return value from the Dll.
4) Number of passed parameters the Entry point requires.
5) Type of each of the passed parameters.

WIL supports the following types of return types from a Dll:
1) word 16 bit integer
2) long 32 bit integer
3) lpstr 32 bit pointer to a string
4) void no return value

WIL supports the following parameter types to pass data to a Dll:
1) word 16 bit integer
2) long 32 bit integer
3) lpstr 32 bit pointer to a string
4) lpnull 32 bit NULL pointer
5) lpbinary 32 bit pointer to a memory block allocated with the

BinaryAlloc function.    See section on Binary Operations.

Note:    If lpbinary is used to pass information from a Dll back to a WIL script via a DllCall, then be sure
to use BinaryEodSet to manually set the end of data point so that the other binary functions can
reference the returned data.

The DllCall parameters are as follows:
First: The first parameter defined the Dll to be used.    It can either be a dllname or a

dllhandle.    A dllname may be used for "oneshot" types of calls where a single call to
the Dll is all that is required, or when each call to the Dll is independent of all other
calls.    A dllhandle is used for multiple calls to a Dll, where the calls are interrelated --
perhaps the first call to initialize the Dll, other calls use it, and a final call to terminate
processing.    In such cases the Dll must first be loaded with the DllLoad function,
and freed with the DllFree function.    The first parameter must be one of the
following:

dllname:    Simply the filename of the Dll that contains the desired entry point name.   
A single Dll may contain one to many separate entry points.    Each entry point may
have its own unique return type and parameter list.
dllhandle:    A handle do a Dll obtained from the DllLoad function.

Second: The second parameter consists of two parts, the first part is the return type of the
entry point desired, followed by a colon (:), and the second part is the entry point
name itself.

Note:    Only use the lpstr return type for text strings.    Even though some other
documentation might suggest using a lpstr as a return type for its structures, dont.   
Use long instead.

For each parameter the entry point requires, an additional parameter is added to the DllCall parameter
list.    If the entry point has no parameters, then the DllCall function uses only the first and second
parameters as described above.

Additional: For each parameter that the entry point in the Dll requires, additional DllCall
parameters are added.    Each additional parameter consists of two parts, the first
part is the parameter type of the required parameter, followed by a colon (:), and the
second part is the parameter itself.

Example:

; DllCall example.
; This example calls the AnsiUpper API in the Windows User module.
; For some reason, the main Windows DLLs uses the EXE extension
; even though they are really DLLs. The AnsiUpper function
; requires a 32 bit pointer to a string (lpstr).
; It converts the string to uppercase and passes back a 32 bit
; pointer (also lpstr) to the uppercased string.
; The AnsiUpper function is found in the Windows USER.EXE Dll.
; As the USER.EXE file is on the search path, no other
; path/directory information is required.
; Note: Dll Name, being a normal string is in quotes.
; Entry point name, also being a string, is also in quotes
; Parameter a0, being a normal variable is not in quotes.

a0="Hello Dolly"
a1=DllCall("USER.EXE", lpstr:"AnsiUpper", lpstr:a0)
Message(a0,a1)

See Also:
Binary Operations, DllCall    Additional    information, DllLoad, DllFree, DllHwnd, DllHinst

DllCall    Additional    information

In 16 bit versions of Windows, functions that are called using DllCall must use the _pascal calling
convention (declared as FAR PASCAL or WINAPI).    In 32 bit versions of Windows, they must use the
__stdcall calling convention (declared as WINAPI).    Otherwise, DllCall will return a "Bad Entrypoint" or
"Bad Parameter List" error message, even though you have specified the correct function name and
parameter types; this would likely indicate that the function is using an unsupported calling convention.

Problem:
Under 32-bit Windows, using DllCall to call a function in a custom DLL that you've developed produces
the error message:

"NT DllCall: Bad Parameter List"

followed by the error message:

"1379: DllCall: Bad type list caused stack problems.
Check types carefully."

--

First check the number of parameters and the parameter types carefully to
make sure that they are indeed correct.    If they are, it is likely that the
problem is due to your function using the __cdecl calling convention,
instead of the required __stdcall.    To change this, follow these steps:

1. Add the keyword "WINAPI" to your function prototype and declaration:

          LONG WINAPI MyFunction(LPSTR);
          LONG WINAPI MyFunction(LPSTR lpString)

This ensures that the function will use the __stdcall calling convention,
instead of the default __cdecl convention.    DllCall requires __stdcall,
in which the called function is responsible for removing the parameters
from the stack (similar to _pascal in 16 bit versions of Windows).    The
WIL program checks the stack pointer before and after the DllCall; if
they are not the same, this indicates that either (1) you did not specify
the correct parameters to DllCall, or (2) the called function did not
clean up the stack properly (probably because it wasn't using __stdcall).

Alternatively, in Visual C++ you can use the "/Gz" compiler option (or
set Calling Convention to "__stdcall" under "Project | Settings | C/C++ |
Category: Code Generation" in the IDE) to make all your functions use
__stdcall, but it's wise to specify WINAPI in the declarations as well.

2. Add the option "/EXPORT:MyFunction" to the (VC++) LINK command line.

Or, if you have more than one exported function, it may be easier to
create a module definition (.DEF) file with an EXPORTS section (or add
an EXPORTS section to your existing .DEF file):

          EXPORTS
              MyFunctionA
              MyFunctionB

If you use the .DEF file method, you will also need to add the option
"/DEF:filename" to the (VC++) LINK command line, where "filename" is the name of your module
definition file (by default, VC++ 2.x does not create or use .DEF files).

This is necessary, even if you have specified "__declspec(dllexport)"
in the function declaration, because __stdcall "decorates" (mangles)
the function name when it is exported, so that in the DLL it becomes:

          _MyFunction@4

where the number following the '@' symbol is the stack space used by the
function (the parameter count * 4).    This prevents DllCall from accessing
the function.    Exporting the function using the /EXPORT option (or via
the EXPORTS section) causes the real, un-decorated name to be exported.

After you've done this, it's no longer necessary to declare the function as "__declspec(dllexport)",
although it certainly wouldn't hurt to do so.

DllFree
This function frees a Dll that was loaded via the DllLoad function.

Syntax:
DllFree(dllhandle)

Parameters:
(s) dllhandle handle of the Dll to be freed.

Returns:
(i) always 0.

Use this function to free Dlls that were loaded with the DllLoad function.    Failure to free such Dlls will use
up system resources.

Example:
a0="Hello Dolly"
dllhandle=DllLoad("USER.EXE")
a1=DllCall(dllhandle, lpstr:"AnsiUpper", lpstr:a0)
DllFree(dllhandle)
Message(a0,a1)

See Also:
Binary Operations, DllCall, DllCall    Additional    information, DllLoad

DllHinst
Obtains an application instance handle for use in DllCalls when required.

Syntax:
DllHinst(partial-winname)

Parameters:
(s) partial-winnamethe initial part of, or an entire, window name.

Returns:
(i) an application instance handle.

Use this function to return a valid application instance handle (hInst) of the application owning the
specified window.

Note: "Partial-winname" is the initial part of a window name, and may be a complete window name.    It is
case-sensitive.    You should specify enough characters so that "partial-windowname" matches only one
existing window.    If it matches more than one window, the most recently accessed window which it
matches will be used.    The windowname    ""    may be used as a shorthand way of referring to the WIL
parent application window.

Example:
binbuf=BinaryAlloc(100)
hInst=DllHinst("")
DllCall("KRNL386.EXE",word:"GetModuleFileName",word:hInst,

lpbinary:binbuf,word:100)
; Note DllCalls do not set EOD point in buffer.
BinaryEodSet(binbuf, 100) ;

a=BinaryPeekStr(binbuf, 0, 100)
BinaryFree(binbuf)
Message("Window module filename is", a)

See Also:
Binary Operations, DllCall, DllCall    Additional    information, DllHwnd

DllHwnd
Obtains a window handle for use in DllCalls when required.

Syntax:
DllHwnd(partial-winname)

Parameters:
(s) partial-winnamethe initial part of, or an entire, window name.

Returns:
(i) a window handle.

Use this function to return a valid window handle (hWnd) of specified window.    Some Dlls require a
window handle. This function will provide - in most cases - a usable window handle.

Note: "Partial-winname" is the initial part of a window name, and may be a complete window name.    It is
case-sensitive.    You should specify enough characters so that "partial-windowname" matches only one
existing window.    If it matches more than one window, the most recently accessed window which it
matches will be used.    The windowname    ""    may be used as a shorthand way of referring to the WIL
parent application window.

Example:
binbuf=BinaryAlloc(100)
hWnd=DllHWnd("")
DllCall("USER.EXE",word:"GetClassName",word:hWnd,lpbinary:binbuf,

word:100)
; Note DllCalls do not set EOD point in buffer.
BinaryEodSet(binbuf, 100)
a=BinaryPeekStr(binbuf, 0, 100)
BinaryFree(binbuf)
Message("Window class name is", a)

See Also:
Binary Operations, DllCall, DllCall    Additional    information, DllHinst

DllLoad
This function loads a Dll for later use via the DllCall function

Syntax:
DllLoad(dllname)

Parameters:
(s) dllname The name of the Dll to be called.

Returns:
(s) a handle to a Dll for use in DllCalls.

When multiple calls are to be made to a Dll, and the calls are interdependent, the Dll should be first
loaded via the DllLoad command, and the return value - a dllhandle - should be passed to the DllCall
function instead of a filename.

Example:
a0="Hello Dolly"
dllhandle=DllLoad("USER.EXE")
a1=DllCall(dllhandle, lpstr:"AnsiUpper", lpstr:a0)
DllFree(dllhandle)
Message(a0, a1)

See Also:
Binary Operations, DllCall, DllCall    Additional    information, DllFree

DOSVersion
Returns the version numbers of the current version of DOS.

Syntax:
DOSVersion (level)

Parameters:
(i) level @MAJOR or @MINOR.

Returns:
(i) integer or decimal part of DOS version number.

@MAJOR returns the integer part (to the left of the decimal).
@MINOR returns the decimal part (to the right of the decimal).

If the version of DOS in use is 5.0, then:
DOSVersion(@MAJOR) == 5
DOSVersion(@MINOR) == 0

Example:
i = DOSVersion(@MAJOR)
d = DOSVersion(@MINOR)
If StrLen(d) == 1 Then d = StrCat("0", d)
Message("DOS Version", "%i%.%d%")

See Also:
Environment, Version, VersionDLL, WinVersion

Drop
Removes variables from memory.

Syntax:
Drop (var, [var...])

Parameters:
(i) var variable names to remove.

Returns:
(i) always 1.

This function removes variables from the WIL Interpreter's variable list, and recovers the memory
associated with the variable (and possibly related string storage).
A variable is defined the first time it appears to the left of an equal sign in a statement.    It stays defined
until it is explicitly dropped with the Drop function, or until the current invocation of the WIL Interpreter
gets closed.
Generally speaking: in batch file-based implementations of WIL, all variables are dropped automatically at
the end of every batch file; and in menu-based implementations of WIL, variables stay defined until
explicitly dropped.

Example:
a = "A variable"
b = "Another one"
Drop(a, b) ; This removes A and B from memory

See Also:
IsDefined

EndSession
Ends the Windows session.

Syntax:
EndSession ()

Parameters:
(none)

Returns:
(i) always 0.

Use this command to end the current Windows session, just like selecting Close from Program
Manager's control menu.    If any active applications pop up dialog boxes in response to this command
(such as prompting to save data files which have changed), the user will need to respond to them before
Windows will close.

Example:
while AskYesNo ("End Session", "You want to exit Windows?")

EndSession()
endwhile
:cancel
Message("", "Exit Windows canceled")

See Also:
Exit, WinClose, WinCloseNot

Environment
Gets a DOS environment variable.

Syntax:
Environment (env-variable)

Parameters:
(s) env-variable any defined environment variable.

Returns:
(s) environment variable contents.

Use this function to get the value of a DOS environment variable.

Note: It is not possible to change a DOS environment variable from within Windows.

HINT:    Use the WWENVMAN.Dll, WIL Environment extender, for enhanced environment management.   
Further explanations are in WWWENV.HLP.

Example:
; Display the PATH for this DOS session
currpath = Environment("PATH")
Message("Current DOS Path", currpath)

See Also:
IniRead, Version, WinMetrics, WinParmGet

EnvironSet
Changes LOCAL Environment variables.

Syntax:
EnvironSet(name,    value)

Parameters:
(s) name name of environment variable.    (See Note 1).
(s) value desired value.

Returns:
(i) @TRUE    Environment variable was modified.

@FALSE    Unable to modify environment.

Use this function to change the LOCAL environment variables.
16 bit versions

Windows (only - not DOS) applications may be launched with the modified local environment with the
RunEnviron command.    You can use the EnvironSet function to modify the local path, and then to
launch a program with the RunEnviron command.    See Note 3 for information on how to alter the path
for DOS programs.

32 bit versions
32 bit versions of WIL will always pass the local environment to any programs they launch.    In the 32
bit versions, the RunEnviron command is identical to the RunShell Command.

Note 1: DOS expects UPPERCASE environment variable names.    Windows NT and Windows 95 allow
mixed upper and lowercase names.    If you are using WIL with DOS, be sure to use uppercase names.

Note 2: This command does not increase environment size, so to add to the new values , you must
delete something first.    An easy way to do this is to simply add a line to the autoexec.bat file that looks
like:

DUMMY=ABCDEFGHIJKLMNOPQRSTUVWXYZ

This DUMMY variable will hold a place in the master environment.

Note 3: To alter the path for DOS programs, all that is required is a simple batch file, and the usual WIL
Run command.    Assuming the case where one wished to run "command.com" with the path    "c:\
special", a generic batch file as shown below will suffice, along with passing all the information required
as parameters in the WIL Run command.

DoPath.bat      file listing
SET PATH=%1
ECHO %PATH%
PAUSE
%2      %3      %4      %5      %6      %7      %8      %9

WIL Run Command
Run("dopath.bat", "c:\special      command.com")

HINT:    Use the WWENVMAN.Dll, WIL Environment extender, for enhanced environment management.   
Further explanations are in WWWENV.HLP.

Example:
EnvironSet("DUMMY","")
EnvironSet("PATH","X:\EXCEL")
RunEnviron("excel.exe","/E",@NORMAL,@WAIT)

See Also:
Environment, EnvItemize, RunEnviron

EnvItemize
Returns a delimited list of the current environment.

Syntax:
EnvItemize()

Parameters:
none

Returns:
(s) a list containing all variables in the current environment (See Note).

Use this function to return a list of the variables in the current environment.
Note:    This list is delimited by the newline character    (ASCII 10), which can be generated with the
Num2Char function.    The returned list is suitable for a message box display.    Tabs are not used as a
delimiter as they seem to be legal characters within the environment.    The StrReplace function may be
used to change the delimiter to any other character.
HINT:    Use the WWENVMAN.Dll, WIL Environment extender, for enhanced environment management.   
Further explanations are in WWWENV.HLP.

Example:
env=EnvItemize()
Message("The Environment is", EnvItemize())
env=StrReplace(env, Num2Char(10), @TAB)
a=AskItemList("Select a Variable", env, @TAB, @SORTED, @SINGLE)
b=Environment(a)
Message(a, b)

See Also:
Environment, EnvironSet

ErrorMode
Specifies how to handle errors.

Syntax:
ErrorMode (mode)

Parameters:
(i) mode @CANCEL or @NOTIFY or @OFF.

Returns:
(i) previous error setting.

Use this function to control the effects of runtime errors.    The default is @CANCEL, meaning the
execution of the WIL program will be canceled upon any error.

@CANCEL:    All runtime errors will cause execution to be canceled.    The user will be notified which
error occurred.
@NOTIFY:    All runtime errors will be reported to the user, and the user can choose to continue if it
isn't fatal.
@OFF:    Minor runtime errors will be suppressed. Moderate and fatal errors will be reported to the
user.    User has the option of continuing if the error is not fatal.

In general, we suggest the normal state of the program should be ErrorMode(@CANCEL), especially if
you are writing a WIL program for others to use.    You can always suppress errors you expect will occur
and then re-enable ErrorMode (@CANCEL).

Note:    Pay close attention when suppressing errors with the ErrorMode function.    When an error
occurs, the processing of the ENTIRE line is canceled.    Setting the ErrorMode() to @OFF or @NOTIFY
allows execution to resume at the next line.    Various parts of the original line may have not been
executed.

e.g.
ErrorMode(@off)
; The FileCopy will cause a file not found error,
; canceling the execution of the whole line.
; The variable A is set to @FALSE by default

A = FileCopy("xxxxxxxxx", "*.*", @FALSE)
;
; Now there is a NOT symbol in front of the FileCopy.
; Nonetheless, if an error occurs A is still set to @FALSE
; not @TRUE as might be assumed. When an error is suppressed
; with ErrorMode the line is canceled, and any assignment is
; simply set to the default @FALSE value.

A = !FileCopy("yyyyyyyyy", "*.*", @FALSE)

For this reason, ErrorMode() must be used with a great deal of care.    The function for which the errors
are being suppressed should be isolated from other functions and operators as much as possible.

e.g.
; INCORRECT USAGE of ErrorMode()

; In this instance, when the copy has an error, the entire if
; statement is canceled.
; Execution begins (erroneously) at the next line, and states
; that the copy succeeded. Next a fatal error occurs as the
; "else" is found, since it does not have a matching if
ErrorMode(@OFF)
if FileCopy(file1,file2,@FALSE) == @TRUE

Message("Info", "Copy worked")
else

Message("Error", "Copy failed")
endif

; CORRECT USAGE
; In this case, the FileCopy is isolated from other statements
; and flow control logic. When the statement fails, execution
; can safely begin at the next line. The variable "a" will
; contain the default value of zero that a failed assignment
; returns.
; Results are not confused by the presence of other operators.

ErrorMode(@OFF)
a = FileCopy(file1,file2,@FALSE)
ErrorMode(@CANCEL)
if a == @TRUE

Message("Info", "Copy worked")
else

Message("Error", "Copy failed")
endif

See Also:
Debug, Execute, LastError

Exclusive
Controls whether or not other Windows programs will get any time to execute.

Syntax:
Exclusive (mode)

Parameters:
(i) mode @ON or @OFF.

Returns:
(i) previous Exclusive mode.

Exclusive(@OFF) is the default mode.    In this mode, the WIL Interpreter is well-behaved toward other
Windows applications.

Exclusive(@ON) allows WIL programs to run somewhat faster, but causes the WIL Interpreter to be
"greedier" about sharing processing time with other active Windows applications.    For the most part, this
mode is useful only when you have a series of WIL statements which must be executed in quick
succession.

Note:    This function is generally useful in the 16 bit versions of Windows.    In versions of Windows with
true multi-tasking, the effects of this function are negligible.

Example:
Exclusive(@ON)
x = 0
start = TimeDate()
:add
x = x + 1
If x < 1000 Then Goto add
stop = TimeDate()
crlf = StrCat(Num2Char(13), Num2Char(10))
Message("Times", "Start: %start%%crlf%Stop: %stop%")
Exclusive(@OFF)

See Also:
Yield

Execute
Executes a statement in a protected environment.    Any errors encountered are recoverable.

Syntax:
Execute statement

Parameters:
(s) statement any executable WIL statement.

Returns:
(not applicable)

Use this command to execute computed or user-entered statements.    Due to the built-in error recovery
associated with Execute, it is ideal for interactive execution of user-entered commands.
Note that the Execute command doesn't operate on a string, per se, but rather on a direct statement.    If
you want to put a code segment into a string variable, you must use the substitution feature of the
language, as in the example below.

Example:
cmd = ""
cmd = AskLine("WIL Interactive", "Command:", cmd)
Execute %cmd%

See Also:
ErrorMode

ExeTypeInfo
Returns an integer describing the type of EXE file specified.

Syntax:
ExeTypeInfo(EXENAME)

Parameters:
(s)EXENAME the name of the desired .EXE, .COM, .PIF, .BAT file or data file.

(Returns:
(i) integer 0 = not an EXE file.

1 = Old style DOS EXE.
2 = New Style DOS EXE.
3 = Windows EXE.
10 = Windows NT EXE

Use this function to return an integer describing and identifying the type of EXE file specified.

Example:
a=ExeTypeInfo("Notepad.exe")
switch a

case 0
b="Not an EXE file"
break

case 1
b="Old DOS EXE"
break

case 2
b="New DOS EXE"
break

case 3
b="Windows EXE"
break

case 10
b="Windows NT EXE"
break

case a
b="Unknown file type, value = %a%"
break

endcase
 Message("File Type", b)

See Also:
AskFileName, FileFullName, FileMapName

Exit
Unconditionally ends a WIL program.

Syntax:
Exit

Parameters:
(none)

Returns:
(not applicable)

Use this command to immediately terminate a WIL program.    An Exit is implied at the end of each top-
level WIL program, and so is not necessary there.

Example:
a = 100
Message("The value of a is", a)
Exit

See Also:
Pause, Return, Terminate

Exp
Calculates the exponential.

Syntax:
Exp(x)

Parameters:
(f) xfloating point number.

Returns:
(f) the value of the exponential    (    e ** x).

The exp function returns the exponential function of the floating point argument (x).

Example:
real=AskLine("Exponential", "Enter a number", "1.23")
answer=Exp(real)
Message("Exponential of %real% degrees is",answer)

See Also:
LogE

Fabs
Calculates the absolute value of a floating-point argument.

Syntax:
Fabs(x)

Parameters:
(f) xfloating point number.

Returns:
(f) returns the absolute value of the argument.

Use this function to calculate the absolute value of a floating point argument.    There is no error return.

Example:
a = -1.23
Message("Fabs(%a%) is", Fabs(a))

See Also:
<none>

FileAppend
Appends one or more files to another file.

Syntax:
FileAppend (source-list, destination)

Parameters:
(s) source-list a string containing one or more filenames, which may be wildcarded.
(s) destination target file name.

Returns:
(i) @TRUE if all files were appended successfully;

@FALSE if at least one file wasn't appended.

Use this function to append an individual file or a group of files to the end of an existing file.    If
destination does not exist, it will be created.
The file(s) specified in source-list will not be modified by this function.
Source-list may contain * and ? wildcards.    Destination may not contain wildcards of any type; it must
be a single file name.
Note:    In the 32-bit version of WIL, the "default" file delimiter used to delimit lists of files and directories,
has been changed to a TAB.    In the 16-bit version of WIL, the "default" delimiter has not changed, and
remains a space.    We have added the ability to change the file delimiter to a character of your own
choosing, using IntControl 29.

Examples:
FileAppend("c:\config.sys", "c:\misc\config.sav")

DirChange("c:\batch")
FileDelete("allbats.fil")
FileAppend("*.bat", "allbats.fil")

See Also:
FileCopy, FileDelete, FileExist

FileAttrGet
Returns file attributes.

Syntax:
FileAttrGet (filename)

Parameters:
(s) filename file whose attributes you want to determine.

Returns:
(s) attribute settings.

Returns attributes for the specified file, in a string of the form "RASH".    This string is composed of four
individual attribute characters, as follows:

Char Symbol Meaning
1 R Read-only ON
2 A Archive ON
3 S System ON
4 H Hidden ON

A hyphen in any of these positions indicates that the specified attribute is OFF.    For example, the string "-
A-H" indicates a file which has the Archive and Hidden attributes set.

Example:
editfile = "c:\config.sys"
attr = FileAttrGet(editfile)
If StrSub(attr, 1, 1) == "R"

Message("File is read-only", "Cannot edit %editfile%")
else

Run("notepad.exe", editfile)
endif

See Also:
FileAttrSet, FileTimeGet

FileAttrSet
Sets file attributes.

Syntax:
FileAttrSet (file-list, settings)

Parameters:
(s) file-list space-delimited list of files.
(s) settings new attribute settings for those file(s).

Returns:
(i) always 0.

The attribute string consists of one or more of the following characters (an upper case letter turns the
specified attribute ON, a lower case letter turns it OFF):

R read only ON
A archive ON
S system ON
H hidden ON
r read only OFF
a archive OFF
s system OFF
h hidden OFF

File list may contain * and ? wildcards.
Note:    In the 32-bit version of WIL, the "default" file delimiter used to delimit lists of files and directories,
has been changed to a TAB.    In the 16-bit version of WIL, the "default" delimiter has not changed, and
remains a space.    We have added the ability to change the file delimiter to a character of your own
choosing, using IntControl 29.

Examples:
FileAttrSet("win.ini system.ini", "rAsH")

FileAttrSet("c:\command.com", "R")

See Also:
FileAttrGet, FileTimeTouch

FileClose
Closes a file.

Syntax:
FileClose (filehandle)

Parameters:
(i) filehandle same integer that was returned by FileOpen.

Returns:
(i) always 0.

Example:
; the hard way to copy an ASCII file
old = FileOpen("config.sys", "READ")
new = FileOpen("sample.txt", "WRITE")
while @TRUE ; Loop till break do us end

x = FileRead(old)
If x == "*EOF*" Then Break
FileWrite(new, x)

endwhile
FileClose(new)
FileClose(old)

See Also:
FileOpen, FileRead, FileWrite

FileCompare
Compares two files and reports on the result.

Syntax:
FileCompare(filename1, filename2)

Parameters:
(s) filename1 name of first file to compare
(s) filename2 name of second file to compare

Returns:
    (i) compare result.    Possible values are:

 0 Files contents are identical.
 1 Files are same size but different - first file is newer.
-1 Files are same size but different - second file is newer.
 2 Files are different - first file is newer.
-2 Files are different - second file is newer.
 3 Second file missing - only first file exists.
-3 First file missing - only second file exists.
 4 Neither file exists.

Use this function to compare two files to determine if they are identical or not.    If the return value is zero,
the file contents are identical.    If the return value is not zero, the actual value provides additional
information on why they didnt compare.    An actual byte by byte compare is performed only if the file sizes
are identical, otherwise it is obvious that the files must be different.

Example:
;Assuming a copy of win.ini has been previously made to win.sav
a=FileCompare("WIN.INI", "WIN.SAV")
if a==0

Message("Info", "WIN.INI not modified")
else

Message("Alert!", "WIN.INI has been modified")
endif

See Also:
ExeTypeInfo, FileCopy, FileMove, FileDelete

FileCopy
Copies files.

Syntax:
FileCopy (source-list, destination, warning)

Parameters:
(s) source-list a string containing one or more filenames, which may be wildcarded.
(s) destination target file name.
(i) warning @TRUE if you want a warning before overwriting existing files;

@FALSE if no warning desired.
Returns:

(i) @TRUE if all files were copied successfully;
@FALSE if at least one file wasn't copied.

Use this function to copy an individual file, a group of files using wildcards, or several groups of files by
separating the names with spaces.
You can also copy files to any COM or LPT device, but do not place a colon after the name of the device.
Source list-and destination may contain * and ? wildcards.
Note:    In the 32-bit version of WIL, the "default" file delimiter used to delimit lists of files and directories,
has been changed to a TAB.    In the 16-bit version of WIL, the "default" delimiter has not changed, and
remains a space.    We have added the ability to change the file delimiter to a character of your own
choosing, using IntControl 29.

Examples:
FileCopy("c:\command.com", "d:\", @FALSE)

FileCopy("*.ini *.cfg", "*.bak", @TRUE)

FileCopy("c:\config.sys", "LPT1", @FALSE)

See Also:
FileDelete, FileExist, FileLocate, FileMove, FileRename

FileDelete
Deletes files.

Syntax:
FileDelete (file-list)

Parameters:
(s) file-list a string containing one or more filenames, which may be wildcarded.

Returns:
(i) @TRUE if all the files were deleted;

@FALSE if a file didn't exist or is marked with the READ-ONLY attribute.

File list- may contain * and ? wildcards.
Use this function to delete an individual file, a group of files using wildcards, or several groups of files by
separating the names with spaces.
Note:    In the 32-bit version of WIL, the "default" file delimiter used to delimit lists of files and directories,
has been changed to a TAB.    In the 16-bit version of WIL, the "default" delimiter has not changed, and
remains a space.    We have added the ability to change the file delimiter to a character of your own
choosing, using IntControl 29.

Example:
FileDelete("*.bak temp???.fil")

See Also:
FileExist, FileLocate, FileMove, FileRename

FileExist
Tests for the existence of files.

Syntax:
FileExist (filename)

Parameters:
(s) filename either a fully qualified filename with drive and path, or just a filename

and extension.
Returns:

(i) @TRUE if the file exists;
@FALSE if it doesn't exist or if the pathname is invalid.
2 - if the specified file exists but is currently open by another application in read deny
mode.

This function is used to test whether or not a specified file exists.
If a fully-qualified file name is used, only the specified drive and directory will be checked for the desired
file.    If only the root and extension are specified, then first the current directory is checked for the file, and
then, if the file is not found in the current directory, all directories in the DOS path are searched.   
FileExist returns "2" if the specified file exists but is currently open by another application in read deny
mode.    If you try to access this file using (most of) the other "File..." functions, it will cause a sharing
violation.

Examples:
; check for file in current directory
fex = FileExist(StrCat(DirGet(), "myfile.txt"))
tex = StrSub("NOT", 1, StrLen("NOT") * fex)
Message("MyFile.Txt"," Is %tex%in the current directory")

; check for file someplace along path
fex = FileExist("myfile.txt")
tex = StrSub("NOT", 1, StrLen("NOT") * fex)
Message("MyFile.Txt", " Is %tex% in the DOS path")

See Also:
DirExist, FileLocate

FileExtension
Returns the extension of a file.

Syntax:
FileExtension (filename)

Parameters:
(s) filename [optional path]full file name, including extension.

Returns:
(s) file extension.

This function parses the passed filename and returns the extension part of the filename.
Note:    The extension must be in uppercase.

Example:
; prevent the user from editing a COM or EXE file
allfiles = FileItemize("*.*")
editfile = AskItemList("Select file to edit", allfiles, " ", @unsorted, @single)
ext = FileExtension(editfile)
If (ext == "COM") || (ext == "EXE")

Message ("Sorry", "You may not edit a program file")
else

Run("notepad.exe", editfile)
endif

See Also:
Dialog, FilePath, FileRoot

FileFullName
Fleshes out a file name with drive and path information .

Syntax:
FileFullName(partial filename)

Parameters:
(s) partial filename possibly incomplete filename - missing drive and/or path.

Returns:
(s) a complete file name.

Use this function to return the complete file name from a partial file name.    Drive and path information will
be added to the file name to create a full file name.    If both drive and path are missing, the currently
logged drive and path will be used.    If only drive is missing, the currently logged drive will be used.    If
drive is specified without a path, then the currently logged directory on that drive will be used.

Example:
DirChange("C:\TEMP")
a="Test.abc"
b=FileFullName(a)
Message(a,b)
; b will equal C:\TEMP\TEST.ABC

See Also:
AskFileName, ExeTypeInfo, FileMapName, FileLocate

FileItemize
Returns a space-delimited list of files.

Syntax:
FileItemize (file-list)

Parameters:
(s) file-list a string containing a list of filenames, which may be wildcarded.

Returns:
(s) space-delimited list of files.

This function compiles a list of filenames and separates the names with spaces.

This is especially useful in conjunction with the AskItemList function, which lets the user choose an item
from such a space-delimited list.

Note: Some shell or file manager applications using the WIL Interpreter allow an empty string ("") to be
used as the "file-list" parameter, in which case all files highlighted in the file display are returned.   
However, if there are any file names or wildcards in the string, all files matching the file names are
returned, regardless of which ones are highlighted.
Note:    In the 32-bit version of WIL, the "default" file delimiter used to delimit lists of files and directories,
has been changed to a TAB.    In the 16-bit version of WIL, the "default" delimiter has not changed, and
remains a space.    We have added the ability to change the file delimiter to a character of your own
choosing, using IntControl 29.

Examples:
a = FileItemize("*.bak") ;all BAK files
b = FileItemize("*.arc *.zip *.lzh") ;compressed files

; Get which .INI file to edit
ifiles = FileItemize("c:\windows*.ini")
ifile = AskItemList(".INI Files", ifiles, " ", @unsorted, @single)
RunZoom("notepad", ifile)
Drop(ifiles, ifile)

See Also:
CurrentFile, DirItemize, AskItemList, AskFileText, WinItemize

FileLocate
Finds file in current directory or along the DOS path.

Syntax:
FileLocate (filename)

Parameters:
(s) filename full file name, including extension.

Returns:
(s) fully-qualified path name.

This function is used to obtain the fully qualified path name of a file.    The current directory is checked
first, and if the file is not found, the DOS path is searched.    The first occurrence of the file is returned.

Example:
; Edit WIN.INI
winini = FileLocate("win.ini")
If winini == ""

Message("???", "WIN.INI not found")
else

Run("notepad.exe", winini)
endif

See Also:
FileExist

FileMapName
Transforms a filename with a file wildcard mask and returns a new filename.

Syntax:
FileMapName(filename, mapping-data).

Parameters:
(s) filename full or partial file name.
(s) mapping data mapping and wildcard definition string (see below).

Returns:
(s) transformed file name.

Use this function to generate a new filename based on an old filename.    It can be used to generate *.bak
filenames easily, or to perform assorted wildcard transformations on a filename.    The mapping-data
consists of the normal (optional) drive, path, legal filename characters, the period, and two special
wildcard characters, the asterisk (*) and the question mark (?).    The following algorithm is used to
transform the file name:

1) If drive is specified in the mapping-data use specified drive, else use current drive.

2) If path is specified in the mapping-data use specified path, else use current path on the drive
selected above.

3) Examine root of the filename and root position of mapping-data, sequencing through the root
characters together, one character at a time.

map-char root transformation rule
. If the mapping position character is a period, stop processing the root filename,

add a period to the end of the new filename string and proceed to process the
extension as outlined below.

* If mapping data position is a asterisk, copy remainder of root file name to new
filename string and proceed to process the extension as outlined below.

? If mapping data position is a question mark, copy the current character from the
root filename to the new filename string.

other If the mapping data character is not one of the above, copy the map character to
the new filename string and ignore the corresponding character in the root
filename.

<none> If there are no more characters in the mapping-data string, filename generation is
complete.    Return with the new string.

4) Examine extension of the filename and extension position of mapping-data, sequencing through
the extension characters together, one character at a time.

map-char extension transformation rule
* If mapping data position is a asterisk, copy remainder of extension file name to

new filename string and return.
? If mapping data position is a question mark, copy the current character from the

extension filename to the new filename string.
other If the mapping data character is not one of the above, copy the map character to

the new filename string and ignore the corresponding character in the extension
filename.

<none> If there are no more characters in the mapping-data string, filename generation is
complete.    Return with the new string.

Example:
DirChange("C:\TEMP")
a=FileMapName("d:\sample\xxx.txt", "*.bak")
Message("New filename", a)
; This will return C:\TEMP\XXX.BAK
;
a=FileMapName("d:\sample\xxx.txt", "c:\demo\??Q.bak")
Message("New filename", a)
; This will return C:\DEMO\XXQ.BAK

See Also:
AskFileName, FileFullName, FileCopy, FileMove

FileMove
Moves files.

Syntax:
FileMove (source-list, destination, warning)

Parameters:
(s) source-list one or more filenames separated by spaces.
(s) destination target filename.
(i) warning @TRUE if you want a warning before overwriting existing files;

@FALSE if no warning desired.
Returns:

(i) @TRUE if the file was moved;
@FALSE if the source file was not found or had the READ-ONLY attribute, or the target
filename is invalid.

Use this function to move an individual file, a group of files using wildcards, or several groups of files by
separating the names with spaces.
You can move files to another drive.    You can also move a file to a COM or LPT port, which would cause
the file to be copied to the port and then deleted (do not put a colon after the name of the port).
Source-list and destination may contain * and ? wildcards.
Note:    In the 32-bit version of WIL, the "default" file delimiter used to delimit lists of files and directories,
has been changed to a TAB.    In the 16-bit version of WIL, the "default" delimiter has not changed, and
remains a space.    We have added the ability to change the file delimiter to a character of your own
choosing, using IntControl 29.

Examples:
FileMove("c:\config.sys", "d:", @FALSE)

FileMove("c:*.sys", "d:*.sys", @TRUE)

See Also:
FileCopy, FileDelete, FileExist, FileLocate, FileRename

FileNameLong {*32}
Returns the long version of a filename.

Syntax:
FileNameLong(filename)

Parameters:
(s) filename fully qualified file name, path optional.

Returns:
(s) the long version of a filename.

FileNameLong searches the path for the filename specified, returning the long filename if found.

Example:
DirChange("C:\win95")
a=FileNameLong("carved~1.bmp")
message("Long Filename", a)

See Also:
FileFullName, FileNameShort

FileNameShort {*32}
Returns the short (ie, 8.3) version of a filename.

Syntax:
FileNameShort(filename)

Parameters:
(s) filename fully qualified file name, path optional.

Returns:
(s) the short version of a filename.

FileNameShort searches the path for the filename specified, returning the short filename if found.

Example:
DirChange("C:\win95")
a=FileNameShort("carved stone.bmp")
message("Short Filename", a)

See Also:
FileFullName, FileNameLong

FileOpen
Opens a STANDARD ASCII / ANSI (only) file for reading, writing or appending.

Syntax:
FileOpen (filename, mode)

Parameters:
(s) filename name of the file to open.
(s) mode "READ", "WRITE". or "APPEND"

Returns:
(i) filehandle, or 0 on error.

The filehandle returned by the FileOpen function may be subsequently used by the FileRead, FileWrite,
and FileClose functions.    If the file cannot be opened as requested, FileOpen returns a filehandle of 0.
You may have a maximum of five files open at one time.

Examples:
; To open for reading:
handle = FileOpen("stuff.txt", "READ")

; To open for writing:
handle = FileOpen("stuff.txt", "WRITE")

; To open for appending:
handle = FileOpen("stuff.txt", "APPEND")

See Also:
Binary Operations, BinaryRead, BinaryWrite, FileClose, FileRead, FileWrite

FilePath
Returns the path of a file.

Syntax:
FilePath (filename)

Parameters:
(s) filename fully qualified file name, including path.

Returns:
(s) fully qualified path name.

FilePath parses the passed filename and returns the drive and path of the file specification, if any.

Example:
coms = Environment("COMSPEC")
compath = FilePath(coms)
Message("Your command processor is located in", compath)

See Also:
CurrentPath, FileExtension, FileRoot

FileRead
Reads data from a file.

Syntax:
FileRead (filehandle)

Parameters:
(i) filehandle same integer that was returned by FileOpen.

Returns:
(s) line of data read from file.

When the end of the file is reached, the string *EOF* will be returned.

Example:
handle = FileOpen("autoexec.bat", "READ")
line=""
while line != "*EOF*"

line = FileRead(handle)
Display(4, "AUTOEXEC DATA", line)

endwhile
FileClose(handle)

See Also:
FileClose, FileOpen, FileWrite

FileRename
Renames files.

Syntax:
FileRename (source-list, destination)

Parameters:
(s) source-list one or more filenames, separated by spaces.
(s) destination target filename.

Returns:
(i) @TRUE if the file was renamed;

@FALSE if the source file was not found or had the READ-ONLY attribute, or the target
filename is invalid.

Use this function to rename an individual file, a group of files using wildcards, or several groups of files by
separating the names with spaces.
Note: Unlike FileMove, you cannot make a file change its resident disk drive with FileRename.
Source-list and destination may contain * and ? wildcards.
Note:    In the 32-bit version of WIL, the "default" file delimiter used to delimit lists of files and directories,
has been changed to a TAB.    In the 16-bit version of WIL, the "default" delimiter has not changed, and
remains a space.    We have added the ability to change the file delimiter to a character of your own
choosing, using IntControl 29.

Examples:
FileRename("c:\config.sys", "config.old")

FileRename("c:*.txt", "*.bak")

See Also:
FileCopy, FileExist, FileLocate, FileMove

FileRoot
Returns root of file.

Syntax:
FileRoot (filename)

Parameters:
(s) filename [optional path] full file name, including extension.

Returns:
(s) file root.

FileRoot parses the passed filename and returns the root part of the filename.

Example:
allfiles = FileItemize("*.*")
editfile = AskItemList("Select file to edit", allfiles," ", @unsorted, @single)
root = FileRoot(editfile)
ext = FileExtension(editfile)
lowerext = StrLower(ext)
nicefile = StrCat(root, ".", lowerext)
Message("", "You are about to edit %nicefile%.")
Run("notepad.exe", editfile)

See Also:
FileExtension, FilePath

FileSize
Finds the total size of a group of files.

Syntax:
FileSize (file-list)

Parameters:
(s) file-list zero or more filenames, separated by spaces.

Returns:
(i) total bytes taken up by the specified file(s).

This function returns the total size of the specified files.
File-list may contain * and ? wildcards.
Note:    In the 32-bit version of WIL, the "default" file delimiter used to delimit lists of files and directories,
has been changed to a TAB.    In the 16-bit version of WIL, the "default" delimiter has not changed, and
remains a space.    We have added the ability to change the file delimiter to a character of your own
choosing, using IntControl 29.

Example:
size = FileSize("*.*")
Message("Size of All Files in Directory", size)

See Also:
DiskFree

FileTimeCode
Returns a machine readable/computable code for a file time.

Syntax:
FileTimeCode(filename)

Parameters:
(s) filename file name to get the time code from.

Returns:
(i) file time code.

Use this function to return an 32 bit integer representing the current file time stamp.    This number may be
compared to other file times to compare ages of files.    It is basically the DOS 16 bit date and the DOS 16
bit time in a 32 bit integer.    This function returns a valid, comparable time through the year 2044.

Example:
a=FileTimeCode("C:\AUTOEXEC.BAT")
b=FileTimeCode("C:\CONFIG.SYS")
if a == b

ans="Same Time"
else

if a > b
ans = "AutoExec newer than Config"

else
ans = "AutoExec older than Config"

endif
endif
Message("Comparing file times", ans)

See Also:
FileTimeGet, FileYmdHms

FileTimeGet
Returns file date and time in a human readable format.

Syntax:
FileTimeGet (filename)

Parameters:
(s) filename name of file for which you want the date and time.

Returns:
(s) file date and time.

This function will return the date and time of a file, in a pre-formatted string.    The format of the string
depends on the current settings in the [Intl] section of the WIN.INI file:

mm/dd/yy    hh:mmXX
dd/mm/yy    hh:mmXX
yy/mm/dd    hh:mmXX

Where:
mm    is the month (e.g. 10)
dd    is the day of the month (e.g. 23)
yy    is the year (e.g. 90)
hh    is the hours
mm    is the minutes
XX    is the Day/Night code (e.g. AM or PM)

The WIN.INI file will be examined to determine which format to use.    You can adjust the WIN.INI file via
the International icon in Control Panel if the format isn't what you prefer.

Note:    If you must parse the time data returned by this function, use the ParseData function to break the
day, date, and time into separate components.    However you should check the FileYmdHms and
FileTimeCode functions first

Example:
oldtime = FileTimeGet("win.ini")
RunWait("notepad.exe", "win.ini")
newtime = FileTimeGet("win.ini")
If StrCmp(oldtime, newtime) == 0

Message("WIN.INI not changed", "Last change was %oldtime%)
else

Message("WIN.INI modified", "New time stamp is %newtime%")
endif

See Also:
FileTimeCode, TimeDate, FileAttrGet, FileTimeTouch, FileTimeSet, FileYmdHms

FileTimeSet
Sets the date and time of one or more files.

Syntax:
FileTimeSet(list, ymdhms)

Parameters:
(s) list filename, list of files, or list of wildcards of files reset.
(s) ymdhms date time in the YmdHms format

Returns:
(i) datetime @TRUE All files specified were time stamped

@FALSEOne or more files were not time stamped.

Use this function to reset the date and time of a specific file or list of files.
Note:    In the 32-bit version of WIL, the "default" file delimiter used to delimit lists of files and directories,
has been changed to a TAB.    In the 16-bit version of WIL, the "default" delimiter has not changed, and
remains a space.    We have added the ability to change the file delimiter to a character of your own
choosing, using IntControl 29.

Example:
; Alter time of the WIN.INI file
b=FileYmdhms("C:\Windows\Win.ini")
Message("File Time is", b)
a="94:02:14:09:38:26"
;
FileTimeSet("C:\Windows\Win.ini", a)
b=FileYmdhms("C:\Windows\Win.ini")
Message("File Time is", b)
;
;Alter the time of all files in the demo directory
a=TimeYmdHms
FileTimeSet("C:\DEMO*. *", a)

See Also:
GetExactTime, FileYmdHms, TimeDiffDays, TimeDiffSecs, TimeYmdHms

FileTimeTouch
Sets file(s) to current date and time.

Syntax:
FileTimeTouch (file-list)

Parameters:
(s) file-list a space-delimited list of files

Returns:
(i) always 0

File-list is a space-delimited list of files, which may contain wildcards.    The path is searched if the file is
not found in current directory and if the directory is not specified in file-list.
Note:    In the 32-bit version of WIL, the "default" file delimiter used to delimit lists of files and directories,
has been changed to a TAB.    In the 16-bit version of WIL, the "default" delimiter has not changed, and
remains a space.    We have added the ability to change the file delimiter to a character of your own
choosing, using IntControl 29.

Example:
FileTimeTouch("sample.c sample.rc")
Run("make.exe", "sample.mak")

See Also:
FileAttrSet, FileTimeGet

FileWrite
Writes data to a file.

Syntax:
FileWrite (filehandle, output-data)

Parameters:
(i) filehandle same integer that was returned by FileOpen.
(s) output-data data to write to file.

Returns:
(i) always 0.

Example:
handle = FileOpen("stuff.txt", "WRITE")
FileWrite(handle, "Gobbledygook")
FileClose(handle)

See Also:
FileClose, FileOpen, FileRead

FileYmdHms
Returns a file time in the YmdHms date time format.

Syntax:
FileYmdHms(filename)

Parameters:
(s) filename filename.

Returns:
(s) file time in YmdHms format.

Use this function to retrieve a file time in the YmdHms format.

Example:
b=FileYMDHMS("C:\CONFIG.SYS")
Message("File Time is", b)

See Also:
FileTimeGet, TimeDate, TimeAdd, TimeDiffDays, TimeYmdHms, TimeDelay, TimeWait

Floor
Calculates the floor of a value.

Syntax:
Floor(x)

Parameters:
(f) xvalue Floor is calculated from.

Returns:
(f) a floating point number whose value represents the largest integer that is less than or

equal to x.

Use this function to calculate the floor of a value.

Example:
; This example accepts a value from the user to calculate
; the ceiling and floor.
a=AskLine("Ceiling and Floor", "Please enter a number", "1.23")
c=Ceiling(a)
f=Floor(a)
Message("Ceiling and Floor of %a%", "Ceiling: %c% Floor: %f%")

ie. A= Ceiling=    Floor=
 25.2 26.0         25.0
 25.7 26.0         25.0
 24.9 25.0         24.0
-14.3 -14.0       -15.0

See Also:
Abs, Ceiling, Fabs, Min, Max

For
Controls the looping of a block of code based on an incrementing index.

Syntax:
For    var-name = initial-value to last-value [by increment]

Parameters:
(s) var-name a variable name to be used for the loop index.
(f) initial-value an expression used to set the initial value of the loop index.
(f) last-value an expression that defines last value to be used in the loop.    When the

initial value
is incremented past the last value, the loop terminates.

(f) increment an expression that defines the amount to increment the loop index on
each pass
through the loop.    The default is one.    The increment may be negative.

Use the For statement to execute a block of code a fixed number of times.    When the For statement is
executed, it initializes the specified variable var-name to the initial-value This variable is called the loop
index.    It then tests the loop index with the last value.    If the increment is positive and the loop index
is greater than the last value, or if the increment is negative and the loop index is less than the last
value, then the loop terminates and control is passed to the statement after the Next statement.

Otherwise the statements below the For are executed until the Next statement is reached.    When the
Next statement is reached, control returns to the For statement so that the loop index may be
incremented and the test for last value repeated.

Example:
; Compute sum of numbers between 1 and selected number
a=AskLine("Sums", "Please enter a number", 5)
f=0
For j = 1 to a

f = f + j
Next
Message("Sum [1 to %a%] is", f)

;Compute factorials
a=AskLine("Factorials", "Please enter a number", 5)
f=1
For j = a to 2 by -1

f=f*j
Next
Message("%a% Factorial is", f)

See Also:
Break, Continue, If, Select, Switch, While

GetExactTime
Returns current time in hundredths of a second.

Syntax:
GetExactTime()

Parameters:
(none)

(Returns:
(s) the current time in hundredths of a second.

Use this function to obtain the current time in hundredths of seconds.

Example:
a=GetExactTime()
Message("Time is", a)

See Also:
TimeDate, TimeYmdHms, GetTickCount

GetTickCount
Returns number of clock ticks used by Windows since Windows started.

Syntax:
GetTickCount()

Parameters:
(none)

Returns:
(s) The number of clock ticks.

Use this function to obtain the number of clock ticks since Windows started.

Example:
a=GetTickCount()
Message("Clock Ticks", a)

See Also:
TimeDate, GetExactTime, TimeYmdHms

GoSub
Transfers control to another point in a WIL program and saves the location of the next statement.

Syntax:
GoSub    label

Parameters:
(s) label user-defined identifier

GoSub label causes an unconditional transfer of control to the line in the program marked :label where
the identifier is preceded by a colon (:).    The location of the next statement after the GoSub statement is
retained, and control may be transferred back to that statement with a Return statement.

Example:
a=1
b=2
c=3
x=21
GoSub Poly
Message("Polynomial evaluates to", y)
a=3
b=4
c=6
x=45
GoSub Poly
Message("Polynomial evaluates to", y)
exit

; Polynomial Computation Subroutine here
:Poly
y = a*(x**2) + b*x + c
return

See Also:
For, Goto, Return, Switch, Select, While

Goto
Changes the flow of control in a WIL program.

Syntax:
Goto label

Parameters:
(s) label user-defined identifier.

Goto label causes an unconditional branch to the line in the program marked :label, where the identifier
is preceded by a colon (:).
Note:    Program flow control structures, such as For/Next, While/EndWhile, Switch/EndSwitch, If/EndIf
must not be "jumped" by a Goto statement.    If a Goto is used inside of one of these structures to send
the flow of control outside of the structure, or if a Goto is used to send the flow of control inside a
structure, errors will result.

Example:
If WinExist("Solitaire") == @FALSE Then Goto open
WinActivate("Solitaire")
Goto loaded
:open
Run("sol.exe", "")
:loaded

See Also:
For, If, Switch, While

IconArrange
Rearranges icons.

Syntax:
IconArrange ()

Parameters:
(none)

Returns:
(i) always 0.

This function rearranges the icons at the bottom of the screen, spacing them evenly.    It does not change
the order in which the icons appear.

Example:
IconArrange ()

See Also:
RunIcon, WinArrange, WinIconize, WinPlaceSet

IconReplace
Replaces an existing icon with a new icon.

Syntax:
IconReplace(filename, iconfilename)

Parameters:
(s) filename either a fully qualified filename with drive and path, or just a filename

and extension.
(s) iconfilename the filename of the icon.

Returns:
(i) @TRUE or @FALSE

Use this function to replace icons.    IconReplace will perform surgery on an EXE file and replace the first
icon in the ICO file.    The icon in the ICO file must be the same size or smaller than the icon in the EXE
file.    It is suggested that due caution be used when using this command, keeping the following points in
mind:

1) The EXE file might become damaged and be unable to run.    This is especially true of some
programs that checksum themselves to verify the EXE.    KEEP BACKUPS.

2) System anti-virus tools might detect the alteration of an EXE file and complain.    If this is true,
then either the anti-virus program must be disabled, or another work around must be used.   
Some Anti-virus programs allow the specification of a "trusted" program - the trusted feature
may be used with due caution.

3) The application whose icon is being modified must not be running while its EXE file is being
modified.

Example:
IconReplace("FILENAME.EXE", "ICONFILE.ICO")

See Also:
<none>

If ... Else ... Endif
If ... Then ... Else
Conditionally performs a function or series of statements.

Syntax:   
Note: There are several forms of the if statement:
if ... endif (structured):

if expression
series
of
statements
 endif

if ... else ... endif (structured):
if expression
series
of
statements
else
series
of
statements
endif

if ... then (single statement):
if expression then statement

if ... then ... else ... (single statement):
if expression then statement

else statement

Parameters:
(s) expression a condition to be evaluated.
(s) statement any valid WIL function or command.
(s) series of statements       

The if statement evaluates the expression following it.    The expression must evaluate to an integer.

In the structured forms of the if syntax, if the expression evaluates to a non zero value (@TRUE) the
series of statements after the if statement up to the first matching else or endif are executed, otherwise
they are skipped.    In the if ... else ... endif syntax, the series of statements after the else are executed if
the result of evaluating the expression is zero (@FALSE).

In the single statement forms of the if syntax, if the expression evaluates to a non zero value (@TRUE)
the statement following the then keyword is executed, otherwise it is skipped.    In the if ... then ... else ...
syntax, the statement following the else is executed if the result of evaluating the expression is zero
(@FALSE).

Example:

; This example guesses a # between 1 and 1023.
Message("Think of a number", "Any number between 0 and 1023")
start = 0
stop = 1023
for i = 1 to 10
 guess = (start+stop+1) /2
 if AskYesNo("Hmmmm", "Is your number smaller than %guess%")
 stop = guess - 1
 else
 start = guess
 endif
next
guess = (start+stop+1) /2
;
;

if guess==0 || guess==1023
 Message("Hmmm", "%guess% eh? Testing the limits again I assume")
else
 if guess==13
 Message("Hmmm", "%guess% seems rather unlucky to me")
 else
 a = guess mod 2
 if a==0 then Message("Hmmm", "Even I can figure %guess%")
 else Message("Hmmm", "It must be %guess%", oddly

enough")
 endif
endif

See Also:
For, Select, Switch, While

IgnoreInput
Turns off hardware input to Windows.

Syntax:
IgnoreInput (mode)

Parameters:
(i) mode @TRUE or @FALSE.

Returns:
(i) previous IgnoreInput mode.

IgnoreInput causes mouse movements, clicks and keyboard entry to be completely ignored.   

Note 1:    Keystokes sent via SendKey functions are also ignored.
Note 2:    This function is not supported in the 32 bit version.

Warning: If you are not careful with the use of IgnoreInput, you can easily lock up your computer!

Example:
username = AskLine("Hello", "Please enter your name","")
IgnoreInput(@TRUE)
Call("demo.wbt", username)
IgnoreInput(@FALSE)

See Also:
WaitForKey

IniDelete
Removes a line or section from WIN.INI.

Syntax:
IniDelete (section, keyname)

Parameters:
(s) section the major heading under which the item is located.
(s) keyname the name of the item to delete.

Returns:
(i) always 0

This function will remove the specified line from the specified section in WIN.INI.    You can remove an
entire section, instead of just a single line, by specifying a keyword of @WHOLESECTION.    Case is not
significant in section or keyname.

Examples:
IniDelete("Desktop", "Wallpaper")

IniDelete("Quicken", @WHOLESECTION)

See Also:
IniDeletePvt, IniItemize, IniRead, IniWrite

IniDeletePvt
Removes a line or section from a private INI file.

Syntax:
IniDeletePvt (section, keyname, filename)

Parameters:
(s) section the major heading under which the item is located.
(s) keyname the name of the item to delete.
(s) filename name of the INI file.

Returns:
(i) always 0.

This function will remove the specified line from the specified section in a private INI file.    You can
remove an entire section, instead of just a single line, by specifying a keyword of @WHOLESECTION.   
Case is not significant in section or keyname.

Example:
IniDeletePvt("Current Users", "Excel", "meter.ini")

See Also:
IniDelete, IniItemizePvt, IniReadPvt, IniWritePvt

IniItemize
Lists keywords or sections in WIN.INI.

Syntax:
IniItemize (section)

Parameters:
(s) section the major heading to itemize.

Returns:
(s) list of keywords or sections.

IniItemize will scan the specified section in WIN.INI, and return a tab-delimited list of all keyword names
contained within that section.    If a null string ("") is given as the section name, IniItemize will return a list
of all section names contained within WIN.INI.    It returns the string "(NONE)" if the specified section does
not exist, and returns a null string ("") if the section exists but is empty.    Case is not significant in section
names.

Examples:
; Returns all keywords in the [Extensions] section
keywords = IniItemize("Extensions")

; Returns all sections in the entire WIN.INI file
sections = IniItemize("")

See Also:
IniDelete, IniItemizePvt, IniRead, IniWrite

IniItemizePvt
Lists keywords or sections in a private INI file.

Syntax:
IniItemizePvt (section, filename)

Parameters:
(s) section the major heading to itemize.
(s) filename name of the INI file.

Returns:
(s) list of keywords or sections.

IniItemizePvt will scan the specified section in a private INI file, and return a tab-delimited list of all
keyword names contained within that section.    If a null string ("") is given as the section name,
IniItemizePvt will return a list of all section names contained within the file.    It returns the string
"(NONE)" if the specified section does not exist, and returns a null string ("") if the section exists but is
empty.    Case is not significant in section names.

Example:
; Returns all keywords in the [Boot] section of SYSTEM.INI
keywords = IniItemizePvt("Boot", "system.ini")

See Also:
IniDeletePvt, IniItemize, IniReadPvt, IniWritePvt

IniRead
Reads data from the WIN.INI file.

Syntax:
IniRead (section, keyname, default)

Parameters:
(s) section the major heading to read the data from.
(s) keyname the name of the item to read.
(s) default string to return if the desired item is not found.

Returns:
(s) data from WIN.INI file.

This function allows a program to read data from the WIN.INI file.
The WIN.INI file has the form:

[section]
keyname=settings

Most of the entries in WIN.INI are set from the Windows Control Panel program, but individual
applications can also use it to store option settings in their own sections.

Example:
; Find the default output device
a = IniRead("windows", "device", "No Default")
Message("Default Output Device", a)

See Also:
Environment, IniDelete, IniItemize, IniReadPvt, IniWrite

IniReadPvt
Reads data from a private INI file.

Syntax:
IniReadPvt (section, keyname, default, filename)

Parameters:
(s) section the major heading to read the data from.
(s) keyname the name of the item to read.
(s) default string to return if the desired item is not found.
(s) filename name of the INI file.

Returns:
(s) data from the INI file.

Looks up a value in the "filename" .INI file.    If the value is not found, the "default" will be returned.

Example:
IniReadPvt("Main", "Lang", "English", "WB.INI")

Given the following segment from WB.INI:
[Main]
Lang=French

The statement above would return:
French

See Also:
Environment, IniDeletePvt, IniItemizePvt, IniRead, IniWritePvt

IniWrite
Writes data to the WIN.INI file.

Syntax:
IniWrite (section, keyname, data)

Parameters:
(s) section major heading to write the data to.
(s) keyname name of the data item to write.
(s) data string to write to the WIN.INI file.

Returns:
(i) always 1.

This command allows a program to write data to the WIN.INI file.    The "section" is added to the file if it
doesn't already exist.

Example:
; Change the list of pgms to load upon Windows
; startup
loadprogs = IniRead("windows", "load", "")
newprogs = AskLine("Add Pgm To LOAD= Line", "Add:", loadprogs)
IniWrite("windows", "load", newprogs)

See Also:
IniDelete, IniItemize, IniRead, IniWritePvt

IniWritePvt
Writes data to a private INI file.

Syntax:
IniWritePvt (section, keyname, data, filename)

Parameters:
(s) section major heading to write the data to.
(s) keyname name of the data item to write.
(s) data string to write to the INI file.
(s) filename name of the INI file.

Returns:
(i) always 1.

Writes a value in the "filename" .INI file.
Note: You cannot use this function to add or update any of the "Device=" entries in the [386Enh] section
of SYSTEM.INI, because that section contains multiple entries with the same keyword.    See
BinaryPokeStr for an example on how to modify the device= lines of the SYSTEM.INI file.

Example:
IniWritePvt("Main", "Lang", "French, "MYFILE.INI")

This would create the following entry in MYFILE.INI:
[Main]
Lang=French

See Also:
Binary Operations, BinaryPokeStr, IniDeletePvt, IniItemizePvt, IniReadPvt, IniWrite

InstallFile
Installs a file.

Syntax:
InstallFile(filename, targname, default-targdir, delete-old, flags)

Parameters:
(s) filename source file to be installed.    (path optional)
(s) targname the name of the target file to be created.    (without path)
(s) default-targdir directory where the file is to be installed.
(i) delete-old @TRUE - to delete existing same name files.
                          @FALSE - to ignore existing same name files.
(i) flags 1 - shared file
                        2 - force install

Returns:
(s)                "result|tempname", or "result|"

When installing image files (EXE's, DLL's, etc.), this function uses the version information embedded in
the files to determine whether a file being installed is newer than an existing file with the same name.   
When installing any other type of file, which does not contain appropriate version information, this function
uses the time stamps of the respective files instead.

The return value is in the form:   
"result|tempname", or
"result|"

where "result" is the value returned by the "VerInstallFile" Windows API function; and "tempname" is the
name of the temporary file that was created if the file could not be installed, or blank otherwise.

"Default-targdir" is the directory where you want the file to be installed.    The file will be installed to this
directory, unless it is a shared file or a file with the same name already exists elsewhere.

If "Delete-old" is @TRUE (or non-zero), and a file with the same name as the file being installed already
exists, it will be deleted, even if it is located in a directory (on the path) other than the target directory.    If
"delete-old" is @FALSE, such a file will not be deleted.

"Flags" specifies other optional flags that affect the operation of this function, combined with the OR ('|')
operator.    They are:

1 - shared file (file should be installed to a shared directory)
2 - force install (install file even if older than existing file)

Note:    The image version can only be interpreted by a corresponding platform version,    ie.    32-bit
images by a 32-bit platform.

Example:
InstallFile("a:\ctl3d.dl_", "ctl3d.dll", DirWindows(1), @TRUE, 1)

See Also:
FileCopy, RegApp

Int
Converts a floating point number or a string to an integer.

Syntax:
Int(x)

Parameters:
(s) x value to be converted.

Returns:
(i) an integer.

Use this function to convert a floating point number or a string to an integer.    If the argument is a string, it
is first converted to a number- if possible.    If the argument is a number within integer range, it will be
converted to the closest integer.

Example:
a=int(5.1) + int("123")
Message("Result is", a)
; a= 5+123 = 128

See Also:
IsInt, IsFloat, IsNumber

IntControl
Internal control functions.

Syntax:
IntControl (request#, p1, p2, p3, p4)

Parameters:
(i) request# specifies which sub-function is to be performed (see below).
(s) p1 - p4 parameters which may be required by the function (see below).

Returns:
(s) varies (see below).

Short for Internal Control, a special function that permits numerous internal operations in the various
products.    The first parameter of IntControl defines exactly what the function does, the other parameters
are possible arguments to the function.
Refer to your product documentation for any further information on this function.
Warning: Many of these operations are useful only under special circumstances, and/or by technically
knowledgeable users.    Some could lead to adverse side effects.    If it isn't clear to you what a particular
function does, don't use it.

IntControl (1, p1, p2, p3, p4)
Just a test IntControl.    It echoes back P1 & P2 and P3 & P4 in a pair of message boxes.

IntControl (4, p1, 0, 0, 0)
Controls whether or not a dialog box with a file-list box in it has to return a file name, or may return merely
a directory name or nothing.

P1 Meaning
0 May return nothing, or just a directory name
1 Must return a file name (default)

IntControl (5, p1, 0, 0, 0)
Controls whether system & hidden files are seen and processed.

P1 Meaning
0 System & Hidden files not used (default)
1 System & Hidden files seen and used

IntControl (12, p1, p2, 0, 0)
IntControl 12 is used to direct WIL and it's parent application (if the parent application supports this
function) as to how to handle users either terminating WinBatch via the "Ctrl-Break" keystroke sequence
or perhaps a menu item, or by simply exiting windows.

P1 codes:    Add desired code in each group together.

Exit Windows group codes (choose one).

P1 Meaning
0 Pop up message box giving user a chance to either cancel bat file or continue.
1 Allow Windows to be exited with no warning.
2 Refuse any attempt to exit Windows.    If P2 is not "" and not 0, display p2 in a message box.   

E.G.
IntControl(12,2,"Attention!    Close all apps first",0,0)

3 Reserved
Terminate Group    (chose one).
Used to direct WIL to allow itself to be terminated without warning or to simply refuse any termination
request (such as Ctrl-Break).

P1 Meaning
0 - Provide notification message when program terminated by user.
4 - Allow quiet termination.
8 - Refuse to terminate.

P2 Codes:    When a "2" is included in the P1 code, P2 provides the message to display to the user.    Use
"" or "0" to clear any previously-set exit message.   

Example:
; We want to refuse termination requests and refuse any attempt to
; exit Windows until the WIL script is complete
;Add codes 2 and 8 making 10
IntControl(12,10,"Close Net apps before exiting Windows", 0, 0)

IntControl (20, 0, 0, 0, 0)
Returns window handle of current parent window. (Similar to DllHwnd)

IntControl (21, p1, 0, 0, 0)
Returns window handle of window matching the partial window-name in p1.

IntControl (22, p1, p2, p3, p4)
Issues a Windows "SendMessage".

p1 Window handle to send to
p2 Message ID number (in decimal)
p3 wParam value
p4 assumed to be a character string.    String is copied to a

GMEM_LOWER buffer, and a LPSTR to the copied string is
passed as lParam. The GMEM_LOWER buffer is freed
immediately upon return from the SendMessage

IntControl (23, p1, p2, p3, p4)
Issues a Windows "PostMessage"

p1 Window handle
p2 Message ID number (in decimal)
p3 wParam
p4 lParam     assumed to be numeric

IntControl (26, 0, 0, 0, 0)
Re-assesses the language currently being used and makes any necessary changes to the language
strings used by the WIL Interpreter.    Normally, this is done at program startup.

IntControl (28, p1, 0, 0, 0)
Selects system font used in list boxes.

P1 Meaning
0 proportional font (default)
1 fixed pitch font

Returns the current font type (0 or 1, as above)

IntControl(29, p1, 0, 0, 0)
Changes the default file delimiter.

p1 New delimiter
We have added the ability to change the file delimiter to a character of your own choosing, using the new
IntControl 29.    If you are using the 32-bit version of WIL, and want to make the file delimiter a space for
compatibility with existing scripts, you can place the following line at the beginning of each of your scripts:
IntControl(29, " ", 0, 0, 0)

Conversely, if you want to standardize on a TAB delimiter, you can use:
IntControl(29, @TAB, 0, 0, 0)

The first parameter for IntControl is the new file delimiter you want to use, and must be a single character. 
The return value of the function is the previous file delimiter character.    If you specify an empty string ("")
as the first parameter, the function will return the current file delimiter character but the file delimiter will
not be changed.

IntControl(30, p1, p2, 0, 0) {*NT}
Performs a delayed file move.

p1 source file
p2 destination

The file is not actually moved until the operating system is restarted.    This can be useful for replacing
system files.    "Sourcefile" must be a single file name, with no wildcards.    "Destination" may be a file
name (which may contain wildcards) or a directory name.    The destination file MUST be on the same
drive as the source file.    If the destination file exists, it will be replaced without warning.    "Destination"
can also be a NULL string (""), in which case the source file will be deleted when the operating system is
restarted.
Under Windows 95, and in the 16-bit version, this function performs a regular (non-delayed) FileMove.
This function returns "1" on success, "2" if it performed a regular FileMove instead, and "0" on failure.

IntControl(31, 0, 0, 0, 0) {*95}
Returns "Window ID's" for all Explorer windows.
This function returns a tab-delimited list of Window ID's for all open Windows 95 Explorer windows.

IntControl(32, address, "data type", 0, 0)
Returns the contents of the memory location specified by "address".

"Data type" specifies the type of data to be retrieved:
"BYTE" - returns a byte
"WORD" - returns a word
"LONG" - returns a long integer

IntControl(33, p1, 0, 0, 0)
Controls whether a listbox control in a dialog box allows multiple items to be selected.

P1 Meaning
0 Single selection
1 Multiple selection (default)

IntControl(34, p1, 0, 0, 0)
Returns the error message string which corresponds to the specified WIL error.

p1 error number.

IntControl(35, p1, 0, 0, 0)
Slows down SendKey.

p1 amount of time to delay between each keypress, in milliseconds (1000 milliseconds = 1 second);
 0 = no delay (default).

Returns previous delay setting.

IntControl(36, p1, p2, 0, 0) (32-bit version only)
Waits until an application is waiting for user input.

p1 = window name associated with application
p2 = time-out, in milliseconds (-1 = no time-out)

This function waits until the process which created the specified window has finished its initialization and
is waiting for user input with no input pending, or until the specified time-out interval has elapsed.    It can
only be used with 32-bit GUI applications.    It returns @TRUE if it has successfully waited, or FALSE if a
time-out has occurred (or if it was unable to initiate a wait).

IntControl (66, 0, 0, 0, 0)
In Windows, thus function restarts Windows, just like exiting to DOS and typing WIN again.    Could be
used to restart Windows after editing the SYSTEM.INI file to change video modes.
In 32 bit versions, this function logs the user out of the current session

IntControl (67, 0, 0, 0, 0)
Performs a warm boot of the system, just like <Ctrl-Alt-Del>.    Could be used to reboot the system after
editing the AUTOEXEC.BAT or CONFIG.SYS files.
In 32 bit versions will cause of reboot of Windows NT machines.

IntControl (68, 0, 0, 0, 0)

Performs a warm boot of the system, just like <Ctrl-Alt-Del>.    Could be used to reboot the system after
editing the AUTOEXEC.BAT or CONFIG.SYS files.

In 32 bit versions will cause a shutdown of the machine, awaiting power off.

IsDefined
Determines if a variable name is currently defined.

Syntax:
IsDefined (var)

Parameters:
(s) var a variable name.

Returns:
(i) @YES if the variable is currently defined;

@NO if it was never defined or has been dropped.

A variable is defined the first time it appears to the left of an equal sign in a statement.    It stays defined
until it is explicitly dropped with the Drop function, or until the current invocation of the WIL Interpreter
gets closed.
Generally speaking: in batch file-based implementations of WIL, all variables are dropped automatically at
the end of every batch file; and in menu-based implementations of WIL, variables stay defined until
explicitly dropped.

Example:
if IsDefined(thisvar)

Message("Value of thisvar is", thisvar)
else

Message("ERROR!", "Variable not defined")
endif

See Also:
Drop

IsFloat
Tests whether a number can be converted to a floating point number.

Syntax:
IsFloat(x)

Parameters:
(s) x value to be tested.

Returns:
(i) @TRUE if the data can be converted to a floating point number;

@FALSE if the data cannot be converted to a floating point number.

Use this function to test whether a number can be converted into a floating point number.

Example:
A=IsFloat(4)
Message("Is 4 a floating point number", A)
B=IsFloat("Hamburger")
Message(Is "Hamburger" a floating point number, B)
C=IsFloat(4.5)
Message("Is 4.5 a floating point number", C)

See Also:
IsInt, IsNumber

IsInt
Tests whether a number is or can be converted into a valid integer.

Syntax:
IsInt(x)

Parameters:
(s) x value to be tested.

Returns:
(i) @TRUE if the data is or can be converted to a valid integer;

@FALSE if the data is not or cannot be converted to a valid integer.

Use this function to test whether a number can be converted into a valid integer.

Example:
A=IsInt(4)
Message("Is 4 an integer", A)
B=IsInt("Hamburger")
Message(Is "Hamburger" an integer, B)
C=IsInt(4.5)
Message("Is 4.5 an integer", C)

See Also:
IsFloat, IsNumber

IsKeyDown
Tells about keys/mouse.

Syntax:
IsKeyDown(keycodes)

Parameters:
(i) keycodes @SHIFT and/or @CTRL.

Returns:
(i) @YES if the key is down;

@NO if the key is not down.

Determines if the Shift key or the Ctrl key is currently down.
Note: The right mouse button is the same as Shift, and the middle mouse button is the same as Ctrl.

Examples:
IsKeyDown(@SHIFT)

IsKeyDown(@CTRL)

IsKeyDown(@CTRL | @SHIFT)

IsKeyDown(@CTRL & @SHIFT)

See Also:
WaitForKey

IsLicensed
Tells if the calling application is licensed.

Syntax:
IsLicensed ()

Parameters:
(none)

Returns:
(i) @YES if it is licensed;

@NO if it is not licensed.

Returns information on whether or not the currently-running version of the calling application is a licensed
copy.

Example:
IsLicensed()

See Also:
Version, VersionDLL

IsMenuChecked {*M}
Determines if a menu item has a checkmark next to it.

Syntax:
IsMenuChecked (menuname)

Parameters:
(s) menuname name of the menu item to test.

Returns:
(i) @YES if the menu item has a checkmark;

@NO if it doesn't.

You can place a checkmark next to a menu item with the MenuChange command, to indicate an option
has been enabled.    This function lets you determine if the menu item has already been checked or not.
Note: This command is not part of the WIL Interpreter package, but is documented here because it has
been implemented in many of the shell or file manager-type applications which use the WIL Interpreter.

Example:
; assume we've defined a "Misc | Prompt Often" menu item
prompt = IsMenuChecked("MiscPromptOften")
if prompt==@TRUE

confirmed = AskYesNo("Delete backups???", "REALLY do this?")
else

confirmed = @YES
endif
if confirmed ==@ YES

; some risky operation the user has just confirmed
FileDelete("C:\temp\backup*.*")

endif

See Also:
IsMenuEnabled, MenuChange

IsMenuEnabled {*M}
Determines if a menu item has been enabled.

Syntax:
IsMenuEnabled (menuname)

Parameters:
(s) menuname name of the menu item to test.

Returns:
(i) @YES if the menu item is enabled;

@NO if it is disabled & grayed.

You can disable a menu item with the MenuChange command if you want to prevent the user from
choosing it.    It shows up on the screen as a grayed item.    IsMenuEnabled lets you determine if the
menu item is currently enabled or not.
Note: This command is not part of the WIL Interpreter package, but is documented here because it has
been implemented in many of the shell or file manager-type applications which use the WIL Interpreter.

Example:
; allow editing of autoexec.bat file only if choice enabled
Terminate(!IsMenuEnabled("UtilitiesEditBatFile"), "", "")
Run("notepad.exe", "c:\autoexec.bat")

See Also:
IsMenuChecked, MenuChange

IsNumber
Tests whether a value is or can be converted into a valid number.

Syntax:
IsNumber(x)

Parameters:
(s) x value to be tested

Returns:
(i) @TRUE if the data is or can be converted to a valid number;

@FALSE if the data is not or cannot be converted to a valid number.

Use this function to test whether a value can be converted into a valid number, either an integer or a
floating point number.

Example:
A=IsNumber(4)
Message("Is 4 a number", A)
B=IsNumber("Hamburger")
Message('Is "Hamburger" a number', B)
C=IsNumber(4.5)
Message("Is 4.5 a number", C)

See Also:
IsFloat, IsInt,

ItemCount
Returns the number of items in a list.

Syntax:
ItemCount (list, delimiter)

Parameters:
(s) list a string containing a list of items.
(s) delimiter a character to act as a delimiter between items in the list.

Returns:
(i) the number of items in the list.

If you create the list with the FileItemize or DirItemize functions you will be using a space-delimited list.   
WinItemize, however, creates a tab-delimited list of window titles since titles can have embedded spaces.

Example:
a = FileItemize("*.*")
n = ItemCount(a, " ")
Message("Note", "There are %n% files")

See Also:
ItemExtract, AskItemList

ItemExtract
Returns the selected item from a list.

Syntax:
ItemExtract (index, list, delimiter)

Parameters:
(i) index the position in list of the item to be selected.
(s) list a string containing a list of items.
(s) delimiter a character to act as a delimiter between items in the list.

Returns:
(s) the selected item.

If you create the list with the FileItemize or DirItemize functions you will be using a space-delimited list.   
WinItemize, however, creates a tab-delimited list of window titles since titles can have embedded blanks.

Example:
bmpfiles = FileItemize("*.bmp")
bmpcount = ItemCount(bmpfiles, " ")
pos = (Random(bmpcount - 1)) + 1
paper = ItemExtract(pos, bmpfiles, " ")
Wallpaper(paper, @FALSE)

See Also:
ItemCount, ItemLocate, AskItemList, ItemSort

ItemInsert
Adds an item to a list.

Syntax:
ItemInsert (item, index, list, delimiter)

Parameters:
(s) item a new item to add to list.
(i) index the position in list after which the item will be inserted.
(s) list a string containing a list of items.
(s) delimiter a character to act as a delimiter between items in the list.

Returns:
(s) new list, with item inserted.

This function inserts a new item into an existing list, at the position following index.    It returns a new list,
with the specified item inserted; the original list (list) is unchanged.    For example, specifying an index of
1 causes the new item to be inserted after the first item in the list; i.e., the new item becomes the second
item in the list.
You can specify an index of 0 to add the item to the beginning of the list, and an index of -1 to append the
item to the end of the list.
If you create the list with the FileItemize or DirItemize functions you will be using a space-delimited list.   
WinItemize, however, creates a tab-delimited list of window titles since titles can have embedded blanks.

Example:
item="five"
list="one two three four"
newlist = ItemInsert(item, -1, list, " ")
message("List after ItemInsert", newlist)

See Also:
ItemCount, ItemRemove

ItemLocate
Returns the position of an item in a list.

Syntax:
ItemLocate (item, list, delimiter)

Parameters:
(s) item item to search for in list.
(s) list a string containing a list of items.
(s) delimiter a character to act as a delimiter between items in the list.

Returns:
(i) position in list of item, or 0 if no match found.

This function finds the first occurrence of item in the specified list, and returns the position of the item (the
first item in a list has a position of 1).    If the item is not found, the function will return a 0.
If you create the list with the FileItemize or DirItemize functions you will be using a space-delimited list.   
WinItemize, however, creates a tab-delimited list of window titles since titles can have embedded blanks.

Example:
list="one two three four "
index=ItemLocate("three", list, " ")
message("The item is located at index #", index)

See Also:
ItemExtract, ItemRemove

ItemRemove
Removes an item from a list.

Syntax:
ItemRemove (index, list, delimiter)

Parameters:
(i) index the position in list of the item to be removed.
(s) list a string containing a list of items.
(s) delimiter a character to act as a delimiter between items in the list.

Returns:
(s) new list, with item removed.

This function removes the item at the position specified by index from a list.    The delimiter following the
item is removed as well.    It returns a new list, with the specified item removed; the original list (list) is
unchanged.
If you create the list with the FileItemize or DirItemize functions you will be using a space-delimited list.   
WinItemize, however, creates a tab-delimited list of window titles since titles can have embedded spaces.

Example:
list="one two three four "
index=ItemLocate("three", list, " ")
newlist = ItemRemove(index, list, " ")
message("List after item is removed", newlist)

See Also:
ItemCount, ItemInsert, ItemLocate

ItemSelect
Allows the user to choose an item from a list box.
Note:    This function has been replaced by AskItemList, but will still work in this version for compatibility
reasons.      See AskItemList.   

Syntax:
ItemSelect (title, list, delimiter)

Parameters:
(s) title the title of the dialog box to display.
(s) list a string containing a list of items.
(s) delimiter a character to act as a delimiter between items in the list.

Returns:
(s) the selected item.

This function displays a dialog box with a list box inside.    This list box is filled with a sorted list of items
taken from a string you provide to the function.
Each item in the string must be separated ("delimited") by a character, which you also pass to the
function.
The user selects one of the items by either double-clicking on it, or single-clicking and pressing OK.    The
item is returned as a string.
If you create the list with the FileItemize or DirItemize functions you will be using a space-delimited list.   
WinItemize, however, creates a tab-delimited list of window titles since titles can have embedded spaces.

Example:
DirChange("c:\winword")
alldotfiles = FileItemize("*.dot")
dotfile = ItemSelect("W4W Templates", alldotfiles, " ")
Run("winword.exe", dotfile)

Which would produce:

See Also:
AskYesNo, AskItemList, AskFileText, Dialog, DirItemize, Display, FileItemize, ItemCount,
ItemExtract, Message, Pause, WinItemize

ItemSort
Sorts a list.

Syntax:
ItemSort (list, delimiter)

Parameters:
(s) list a string containing a list of items.
(s) delimiter a character to act as a delimiter between items in the list.

Returns:
(s) new, sorted list.

This function sorts a list, using an ANSI sort sequence.    It returns a new, sorted list; the original list is
unchanged.
If you create the list with the FileItemize or DirItemize functions you will be using a space-delimited list.   
WinItemize, however, creates a tab-delimited list of window titles since titles can have embedded spaces.

Example:
list=" one two three four "
newlist = ItemSort(list, " ")
message("List generated by ItemSort", newlist)

See Also:
ItemExtract

KeyToggleGet
Returns the status of a toggle key.

Syntax:
KeyToggleGet(@key)

Parameters:
(i) @key the toggle key in question.    Values may be one of:

@CAPSLOCK for the CapsLock key
@NUMLOCK for the NumLock key
@SCROLLLOCK for the ScrollLock key

Returns:
(i) @ON Key was set.

@OFF Key was not set.

Use this function to obtain the state of one of the toggle keys - the CapsLock, NumLock, and ScrollLock
keys.

Note:    On DOS based systems, this function will return the keys state for all applications.    For 32 bit
Windows based systems, the return value will reflect the key state of the application issuing the
KeyToggleGet.

Example:
a1=KeyToggleGet(@NUMLOCK)
a2=KeyToggleGet(@CAPSLOCK)
a3=KeyToggleGet(@SCROLLLOCK)
b= strcat(a1," ",a2," ",a3)
Message("NumLock CapsLock ScrollLock", b)

See Also:
KeyToggleSet, SendKey

KeyToggleSet
Sets the state of a toggle key and returns the previous value.

Syntax:
KeyToggleSet(@key, value)

Parameters:
(i) @key the toggle key in question.    Values may be one of:

@CAPSLOCK for the CapsLock key
@NUMLOCK for the NumLock key
@SCROLLLOCK for the ScrollLock key

(i) value The new value of the toggle key.
@OFF for the unset state
@ON for the set state

Returns:
(i) Previous toggle state of the key    It may be:

@ON Key was set
@OFF Key was not set

Use this function to alter the state of one of the toggle keys - the CapsLock, NumLock, and ScrollLock
keys.
Note:    On DOS based systems, this function will alter the keys state for all applications.    For 32 bit
Windows based systems, only the application issuing the KeyToggleSet command will be affected.

Example:
KeyToggleSet(@NUMLOCK, @ON)
KeyToggleSet(@CAPSLOCK, @ON)
KeyToggleSet(@SCROLLLOCK, @ON)

See Also:
KeyToggleGet, SendKey

yesTRUEC&opy&Printnono&AboutyesyesyesyesWIL L-Z Jump File
WILLZyes24/10/95

Table of Contents

LastError
Log10
LogDisk
LogE
Max
MenuChange {*M}
Message
Min
MouseClick
MouseClickBtn
MouseInfo
MouseMove
MsgTextGet
Net101
NetInfo
Num2Char
Object101, Ole 2.0, and Applications
ObjectOpen
ObjectClose
ParseData
Pause
PlayMedia
PlayMidi
PlayWaveForm
Print
Random
Registration Database Operations
RegApp {*32}
RegCloseKey
RegCreateKey
RegDeleteKey
RegDelValue {*32}
RegOpenKey
RegQueryBin {*32}
RegQueryDword {*32}
RegQueryItem {*32}
RegQueryKey
RegQueryValue
RegSetBin {*32}
RegSetDword {*32}
RegSetValue
Reload {*M}
Return
Run
RunEnviron
RunExit
RunHide
RunHideWait
RunIcon
RunIconWait
RunShell
RunWait
RunZoom
RunZoomWait
Select
SendKey
SendKeysChild
SendKeysTo
SendMenusTo
ShellExecute
ShortcutEdit {*95}
ShortcutExtra {*95}
ShortcutInfo {*95}
ShortcutMake {*95}
Sin
Sinh

SnapShot
Sounds
Sqrt
StrCat
StrCharCount
StrCmp
StrFill
StrFix
StrFixChars
StriCmp
StrIndex
StrLen
StrLower
StrReplace
StrScan
StrSub
StrTrim
StrUpper
Switch
Tan
Tanh
Terminate
TextBox
TextBoxSort
TextSelect
TimeFunctions
TimeAdd
TimeDate
TimeDelay
TimeDiffDays
TimeDiffSecs
TimeJulianDay
TimeJulToYmd
TimeSubtract
TimeWait
TimeYmdHms
Version
VersionDLL
WaitForKey
WallPaper
While
WinActivate
WinActivChild
WinArrange
WinClose
WinCloseNot
WinExeName
WinExist
WinExistChild
WinGetActive
WinHelp
WinHide
WinIconize
WinIdGet
WinIsDOS
WinItemChild
WinItemize
WinItemNameId
WinMetrics
WinName
WinParmGet
WinParmSet
WinPlace
WinPlaceGet
WinPlaceSet
WinPosition
WinResources
WinShow
WinState
WinSysInfo() {*32}

WinTitle
WinVersion
WinWaitClose
WinZoom
Yield

Help file produced by    HELLLP! v2.3a , a product of Guy Software, on 10/24/95 for WILSON
WINDOWWARE, INC..
The above table of contents will be automatically completed and will also provide an excellent cross-
reference for context strings and topic titles.    You may leave it as your main table of contents for your
help file, or you may create your own and cause it to be displayed instead by using the I button on the
toolbar.    This page will not be displayed as a topic.    It is given a context string of _._ and a
HelpContextID property of 32517, but these are not presented for jump selection.
HINT:    If you do not wish some of your topics to appear in the table of contents as displayed to your
users (you may want them ONLY as PopUps), move the lines with their titles and contexts to below this
point.    If you do this remember to move the whole line, not part.    As an alternative, you may wish to set
up your own table of contents, see Help under The Structure of a Help File.
    Do not delete any codes in the area above the Table of Contents title, they are used internally by
HELLLP!

LastError
Returns the most-recent error encountered during the current WIL program.
Syntax:

LastError ()
Parameters:

(none)
Returns:

(i) most-recent WIL error code encountered.

WIL errors are numbered according to their severity.    "Minor" errors go from 1000 through 1999.   
Moderate errors are 2000 through 2999.    Fatal errors are numbered 3000 to 3999.

Depending on which error mode is active when an error occurs, you may not get a chance to check the
error code.    See ErrorMode for a discussion of default error handling.

Don't bother checking for "fatal" error codes.    When a fatal error occurs, the WIL program is canceled
before the next WIL statement gets to execute (regardless of which error mode is active).

Every time the LastError function is called, the "last error" indicator is reset to zero.
A full listing of possible errors you can encounter in processing a WIL program is in Appendix B.   
Of course, if you use the LastError function to trap errors, then extensive script testing -- including all
error conditions -- is highly recommended.
Example:
ErrorMode(@OFF)
FileCopy("data.dat", "c:\backups*.*", @FALSE)
ErrorMode(@CANCEL)
If LastError() == 1006

Message("Error", "Please call Tech Support at 555-9999.")
endif

See Also:
Debug, ErrorMode

Log10
Calculates the base-10 logarithm.
Syntax:

Log10(x)
Parameters:

(f) x                      floating point number.
Returns:

(f)                      the logarithm of the argument .

The Log10 function calculates the base-10 logarithm of the argument. If the argument is negative or zero,
an error will occur.

Example:
a = Log10(123.45)
Message("Base-10 log of 123.45 is", a)

See Also:
Loge, Exp, operator **

LogDisk
Logs (activates) a disk drive.
Syntax:

LogDisk (drive-letter)
Parameters:

(s) drive-letter                  the disk drive to log into.
Returns:

(i)                        @TRUE if the current drive was changed;
                              @FALSE if the drive doesn't exist.

Use this function to change to a different disk drive.
Example:
LogDisk("C:")

See Also:
DirChange, DiskScan

LogE
Calculates the natural logarithm.
Syntax:

LogE(x)
Parameters:

(f) x                    floating point number.
Returns:

(f)                        the logarithm of the argument x.

The LogE function calculates the natural logarithm of the argument.    If the argument is negative or zero,
an error will occur.
Example:
a = LogE(123.45)
Message("Natural log of 123.45 is", a)

See Also:
Log10, Exp, operator **

Max
Returns largest number in a list of numbers.
Syntax:

Max (number [, number...])
Parameters:

(f) number floating point number(s).
Returns:

(f)  largest number.

Use this function to determine the largest of a set of comma-delimited numbers.
Example:
a = Max(5, -3.57, 125, 34E3, 2345.12, -32767)
Message("Largest number is", a)

See Also:
Abs, Average, Min, Random

MenuChange {*M}
Checks, Unchecks, Enables, Or Disables A Menu Item.
Syntax:

MenuChange (menuname, flags)
Parameters:

(s) menuname menu item whose status you wish to change.
(s) flags @CHECK, @UNCHECK, @ENABLE, or @DISABLE.

Returns:
(i) always 1.

There are currently two ways you can modify a menu item:

You can check and uncheck the item to imply that it corresponds to an option that can be turned on or
off.

You can temporarily disable the item (it shows up as gray) and later re-enable it.

The two sets of flags (@Check/@UnCheck and @Enable/@Disable) can be combined in one function
call by using the | (or) operator.

Note: This command is not part of the WIL Interpreter package, but is documented here because it has
been implemented in many of the shell or file manager-type applications which use the WIL Interpreter.
Example:
MenuChange("FilePrint", @Disable)
MenuChange("WPWrite", @Enable | @Check)

See Also:
IsMenuChecked, IsMenuEnabled

Message
Displays a message to the user.
Syntax:

Message (title, text)
Parameters:

(s) title title of the message box.
(s) text text to display in the message box.

Returns:
(i)                always 1.

Use this function to display a message to the user.    The user must respond by selecting the OK button
before processing will continue.
Example:
Message("Current directory is", DirGet())

which produces:

See Also:
Display, Pause

Min
Returns lowest number in a list of numbers.
Syntax:

Min (number [, number...])
Parameters:

(f) number floating point number(s).
Returns:

(f)                      lowest number.

Use this function to determine the lowest of a set of comma-delimited numbers.
Example:
a = Min(5, -37.5, 125, 34.26, 2345E4, -32767)
Message("Smallest number is", a)

See Also:
Abs, Average, Max, Random

MouseClick
Clicks mouse button(s).
Syntax:

MouseClick(click-type, modifiers)
Parameters:

(i) click-type a mouse button press.
(i) modifiers click variations for mouse button presses.

Returns:
(i) @TRUE on success; @FALSE on error.

This function performs a mouse click at the current cursor position.

"Modifiers" can be set to 0 if none are needed.

Click-types:

@LCLICK            left click
@RCLICK            right click
@MCLICK            middle click
@LDBLCLICK left double-click
@RDBLCLICK right double-click
@MDBLCLICK middle double-click

Modifiers (multiple modifiers can be linked together with a logical OR, "|"):

@SHIFT            hold down shift key
@CTRL              hold down control key
@LBUTTON hold down left mouse button
@RBUTTON hold down right mouse button
@MBUTTON hold down middle mouse button

Example:
winpos = WinPlaceGet(@NORMAL, "~Notepad")
; get coordinates for upper right corner of window
x = ItemExtract(3, winpos, " ") - 10
y = ItemExtract(2, winpos, " ") + 10
WinActivate("~Notepad")
MouseMove(x - 10, y + 10, "", "")
MouseClick(@LCLICK, 0)

See Also:
MouseClickBtn, MouseMove
MouseInfo, SendKey

MouseClickBtn
Clicks on the specified button control.
Syntax:

MouseClickBtn(parent-windowname, child-windowname, button-text)
Parameters:

(s) parent-windowname the initial part of, or an entire parent window name.
(s) child-windowname the initial part or, or an entire child window name.
(s) button-text text specifying a button control.

Returns:
(i)                        @TRUE on success; @FALSE on error.

This function clicks on the pushbutton, radio button, or checkbox whose text is specified by "button-text".

If the button is located within a top-level window, specify the window name in "parent-windowname" and
specify a blank string ("") for "child-windowname".

If the button is located within a child window, specify the top-level window name in "parent-windowname"
and the child window name in "child-windowname".

Example:
SendMenusTo("Exploring", "Tools | Map Network Drive")
Delay(3)
MouseClickBtn("Map Network Drive", "", "Reconnect at logon")

See Also:
MouseClick, MouseMove
MouseInfo, SendKey

MouseInfo
Returns assorted mouse information.
Syntax:

MouseInfo (request#)
Parameters:

(i) request# see below.
Returns:

(s)                      see below.

The information returned by MouseInfo depends on the value of request#.

Req# Return value

0 Window name under mouse
1 Top level parent window name under mouse
2 Mouse coordinates, assuming a 1000x1000 virtual screen
3 Mouse coordinates in absolute numbers
4 Status of mouse buttons, as a bitmask:

Binary Decimal Meaning
000 0 No buttons down
001 1 Right button down
010 2 Middle button down
011 3 Right and Middle buttons down
100 4 Left button down
101 5 Left and Right buttons down
110 6 Left and Middle buttons down
111 7 Left, Middle, and Right buttons down

5 returns mouse coordinates relative to the client area of the window    under the cursor, in
virtual (1000x1000) screen units.

6 returns mouse coordinates relative to the client area of the window under the cursor, in
virtual (1000x1000) client units.

For example, if mouse is at the center of a 640x480 screen and above the "Clock" window, and the left
button is down, the following values would be returned:

Req# Return value

0 "Clock"
1 "Clock"
2 "500 500"
3 "320 240"
4 "4"

Example:

Display(1, "", "Press a mouse button to continue")
buttons = 0
while buttons == 0

buttons = MouseInfo(4)
endwhile
If buttons & 4

Display(1, "", "Left button was pressed")
endif
If buttons & 1

Display(1, "", "Right button was pressed")
endif

See Also:
WinMetrics, WinParmGet
MouseClick, MouseClickBtn, MouseMove

MouseMove
Moves the mouse to the specified X-Y coordinates.
Syntax:

MouseMove(X, Y, parent-windowname, child-windowname)
Parameters:

(i) X integer specifying the coordinate X.
(i) Y integer specifying the coordinate Y.
(s) parent-windowname the initial part of, or an entire parent window name.
(s) child-windowname the initial part or, or an entire child window name.

Returns:
(i)                              @TRUE on success; @FALSE on error.

If "parent-windowname" specifies a top-level window and "child-windowname" is a blank string, the
specified X-Y coordinates are relative to "parent-windowname".

If "parent-windowname" specifies a top-level window and "child-windowname" specifies a child window of
"parent-windowname", the specified X-Y coordinates are relative to "child-windowname".

If "parent-windowname" and "child-windowname" are both blank strings, the specified X-Y coordinates
are relative to the Windows desktop.

All coordinates are based on a virtual 1000 x 1000 screen.

Example:
MouseMove(335, 110, "Control Panel", "")

See Also:
MouseClick, MouseClickBtn,
MouseInfo, SendKey

MsgTextGet
Returns the contents of a Windows message box.
Syntax:

MsgTextGet(window-name)
Parameters:

(s) window-name full title of the message box window.
Returns:

(s)                      contents of the message box.

This function returns the text contents of a standard Windows message box.    "Window-name" must be
the full title of the message box window, and is case-sensitive.

Note1:    This function may not work with the types of message boxes created by the application you wish
to control if it is not a standard Windows Message box.    However, if this function does work, it is the
easiest way to keep tabs on an application.

Note2:    This function will not work with the types of message boxes created by most WIL functions,
since they are not standard Windows message boxes.   
Example:
msg = MsgTextGet("Microsoft Word")
If msg == "Search text not found"

SendKey("~")
endif

See Also:
WinGetActive

Net101
All network functionality for WIL is performed via "WIL Extenders", add-on Dlls for WIL, which contain
Network commands for assorted networks.

NetInfo is the only WIL network function.    It returns the types of the networks currently active on the local
machine, and can be used to help determine which network extenders should be loaded in multi-network
environments.

Documentation for the various network extenders are found either in a manual for a particular extender or
in an associated disk file.
See Also:
AddExtender, DllCall, NetInfo

NetInfo
Determines network(s) installed.
Syntax:

NetInfo(requestcode)
Parameters:

(i) requestcode            0 for primary network name
  1 for secondary subnet list

Returns:
(s)                        Primary network name for request code 0, or
                                Secondary network list for request code 1.

Use this function to determine the network type(s) running on a workstation.    When running in a mixed
network environment, it may be important to be able to determine the types of networks running on a
workstation so as to be able to load the appropriate network extender Dlls and issue the corresponding
commands.

NetInfo(0) will return then name of the primary network, or will return "MULTINET" , which indicates the
Windows multinet driver is active and the secondary subnet list should be queried.    NetInfo(0) will return
one of the following strings:

NetInfo(0) return values:
NONE No network installed
MULTINET Multinet driver installed, see subnet codes.
MSNET Microsoft Network
LANMAN LAN Manager
NETWARE Novell NetWare
VINES Banyan Vines
10NET 10 Net
LOCUS Locus
SUNPCNFS SUN PC NFS
LANSTEP LAN Step
9TILES 9 Tiles
LANTASTIC Lantastic
AS400 IBM AS/400
FTPNFS FTP NFS
PATHWORK DEC PathWorks
OTHER1 Other (code 1)
OTHER2 Other(code 2)
UNKNOWN Other (unknown)

If NetInfo(0) returned "MULTINET" then NetInfo(1) will return one or more of the following in a space
delimited list:

NetInfo(1) return values:
NONE No networks active
MSNET Microsoft Network
LANMAN LAN Manager
WINNET Windows Network (Windows for Workgroups, etc)
NETWARE Novell Netware
VINES Banyan Vines
OTHER2 Other (code 0x20)
OTHER4 Other (code 0x40)
OTHER8 Other (code 0x80)

Example:

a=NetInfo(0)
if a=="MULTINET"

b=NetInfo(1)
count=ItemCount(b," ")
Message("Multinet supporting %count% networks", b)

else
Message("Installed Network", a)

endif
See Also:

AddExtender, DllCall, Net101

Num2Char
Converts a number to its character equivalent.
Syntax:

Num2Char (integer)
Parameters:

(i) number any number from 0 to 255.
Returns:

(s)                        one-byte string containing the character which the number represents.

Use this function to convert a number to its ASCII equivalent.
Example:
; Build a variable containing a CRLF combo
crlf = StrCat(Num2Char(13), Num2Char(10))
Message("NUM2CHAR", StrCat("line1", crlf, "line2"))

See Also:
Char2Num, IsNumber

Object101, Ole 2.0, and Applications
The ability to control and assist the movement of data between applications is one of the key strengths of
WIL.    In early versions of WIL, the Clipboard and SendKey functions were the only way to transfer data.   
More recently, dynamic: data exchange (DDE) support allowed both the transfer of data to and the control
of other applications.

Now, with support for OLE Automation, you can do much more than share data. From within your WIL
script,    you can access and manipulate OLE objects that are supplied by other applications. With OLE
Automation, you can use WIL to produce custom solutions that utilize data and features from applications
that support OLE Automation.

What Is OLE Automation?
OLE Automation is an industry standard that applications use to expose their OLE objects to development
tools, macro languages, and container applications that support OLE Automation. For example, a
spreadsheet application may expose a worksheet, chart, cell, or range of cells -- all as different types of
objects. A word processor might expose objects such as applications, paragraphs, sentences. bookmarks,
or selections.

When an application supports OLE Automation, the objects it exposes can be accessed by WIL. You use
WIL scripts to manipulate these objects by invoking methods (subroutines) on the objects, or by getting
and setting the objects' properties (values).

Accessing OLE Objects
You can manipulate other applications' OLE objects directly by first opening the object with the
ObjectOpen function.    The ObjectOpen function is used to open the object.    This function requires a
single parameter -- a string that indicates the application name and the type of object you want to create.
Use the following syntax to specify an object to create:

Application.ObjectType
For example, let's say there is a orgchart application named ORGCHART.EXE that supports a single
object: an orgchart.      Furthermore, the OrgChart object supports two sub-objects:    a box and a line.   
The object might be defined as:

OrgChart.Chart

Once you know the type of object you want to create, you use the ObjectOpen function to create the
object.    Set the value returned by the ObjectOpen function to a variable. Here's an example:

MyChart = ObjectOpen("OrgChart.Chart")

One you have the primary object in hand - in the MyChart variable in this case, you can create the sub-
objects and assign then to their own variables.

TopBox = MyChart.NewBox
BottomBox = MyChart.NewBox
TheLine = MyChart.NewLine

When this code executes, the application providing the object is started (if it is not already running) and
an object is created.    The object belongs to the application that created it.    This object can be referenced
in WIL scripts using the variable you placed the return value of the ObjectOpen function into.    For
example, after creating the object, you could write code such as this to open sub-objects, change the
background color, set a default font, set a title, and save the object to a file:

MyChart.Color = "White"
MyChart.FontName = "Arial"
MyChart.FontSize = 12
MyChart.Title = "Tinas Org Chart"
;
TopBox.Position(2,2)
TopBox.Text = "The Boss"
BottomBox.Position(2,8)
BottomBox.Text = "Tina"
;
TheLine.Begin(2,2)
TheLine.End(2,8)
;
MyChart.SaveAs("C:\ORGCHART\TINA.ORG")

When you are through with an object, use ObjectClose to tell the WIL processor that you are done with
the object.

ObjectClose(TheLine)
ObjectClose(TopBox)
ObjectClose(BottomBox)
ObjectClose(MyChart)

Note1:    To get a list of objects that an application supports, you must consult that application's
documentation.    It may also help to poke around in the Windows registration database.    Be aware,
though, that intentional, unintentional, or accidental changes to the registration database may completely
destroy a Windows installation and require a complete re-installation of ALL your software to recover.

Note2:    When creating an object, some applications require that the application providing the object is
either active or on the system's path.

Accessing an Object's Properties
To assign a value to a property of an object, put the object variable and property name on the left side of
an equation and the desired property setting on the right side. For example:

MyChart.Title = "Tinas Org Chart"

You can also retrieve property values from an object:

TheTitle = MyChart.Title

Performing    Object Methods
In addition to getting and setting properties, you can manipulate an object using the methods it supports.
Some methods may return a value.

MyChart.Position(2,2)
TheLine.End(2,8)
MyChart.SaveAs("C:\ORGCHART\TINA.ORG")
;
a= MyChart.Print()
if a == @FALSE

Message("Error", "Print of MyChart failed")
endif

Methods that do not return a value return 0.

Sub-Objects

Some objects contain sub-objects.    For example, a box is a sub-object of an orgchart object. You cannot
include multiple objects, properties. and methods on the same line of code.    Each object must have its
own variable.    For example:

TopBox = MyChart.NewBox

Closing an Object
All OLE Automation objects support some method that closes the object and the application that created
it. Since OLE objects can use a significant amount of memory, it is a good idea to explicitly close an
object when you no longer need it. To close an object. use the appropriate method (most objects support
the Close method or the Quit method). For example:

Closes the object.
MyChart.Close
Closes the application that created the object.
MyChart.Quit

When WIL processing for an object is complete, use the ObjectClose function to free WIL processor
memory.

ObjectClose("MyChart")

Note3:    The ObjectClose function will suggest to the application that owns the object that its services
are no longer required, and that, if it has nothing better to do, it might as well close up shop and exit.    For
these applications, the    "MyChart.Quit"    as shown above is not required.

OLE 2.0 Limitations in WIL

Some OLE objects support features that can't be accessed using WIL.    This section discusses known
limitations.

Arrays
Some objects have properties and methods that return an array of data or
take an array as an argument.    WIL cannot process    these types of
properties or methods.

Named Arguments
You cannot use named arguments when calling an object's methods in WIL.    You must specify each
argument in the correct order. If you want to omit an optional argument. leave it blank.   

ObjectOpen
Opens or creates an OLE 2.0 Automation object
Syntax:

ObjectOpen(app.objname)
Parameters:

(s) app.objname name of the desired object.
Returns:

(i)                                    a special object handle to be used when referring to the object. 
                                See discussion in Object101 section.

The ObjectOpen function returns a handle to be used when referring to an OLE 2.0 Automation object.   
If the Object does not exist, the function will fail.
Example:
MyChart = ObjectOpen("OrgChart.Chart")
TopBox = MyChart.NewBox
BottomBox = MyChart.NewBox
TheLine = MyChart.NewLine
;
MyChart.Color = "White"
MyChart.FontName = "Arial"
MyChart.FontSize = 12
MyChart.Title = "Tinas Org Chart"
;
TopBox.Position(2,2)
TopBox.Text = "The Boss"
BottomBox.Position(2,8)
BottomBox.Text = "Tina"
;
TheLine.Begin(2,2)
TheLine.End(2,8)
;
MyChart.SaveAs("C:\ORGCHART\TINA.ORG")
;
ObjectClose(TheLine)
ObjectClose(TopBox)
ObjectClose(BottomBox)
ObjectClose(MyChart)

See Also:
Object101, ObjectClose

ObjectClose
Closes an OLE 2.0 Automation object
Syntax:

ObjectClose(objecthandle)
Parameters:

(i) objecthandle handle of object to close.
Returns:

(i)                      @TRUE (always)

The ObjectClose function closes an object and frees WIL processor memory.    The parameter passed to
ObjectClose must be the same variable that the return value from the corresponding ObjectOpen was
placed into.    Otherwise the function will fail.
Example:
MyChart = ObjectOpen("OrgChart.Chart")
a = MyChart.Load("C:\ORGCHART\TINA.ORG")
if a == @TRUE

MyChart.Print
endif
ObjectClose(MyChart)

See Also:
Object101, ObjectOpen

ParseData
Parses the passed string.
Syntax:

ParseData (string)
Parameters:

(s) string string to be parsed.
Returns:

(i)                          number of parameters in string.

This function breaks a string constant or string variable into new sub-string variables named param1,
param2, etc. (maximum of nine parameters).    Blank spaces in the original string are used as delimiters
to create the new variables.

Param0 is the count of how many sub-strings are found in "string".
Example:
username = AskLine("Hello", "Please enter your name","")
ParseData(username)

If the user enters:
Joe Q. User

ParseData would create the following variables:
param1 == Joe
param2 == Q.
param3 == User
param0 == 3

See Also:
ItemExtract, StrSub

Pause
Provides a message to user.    User may cancel processing.
Syntax:

Pause (title, text)
Parameters:

(s) title title of pause box.
(s) text text of the message to be displayed.

Returns:
(i)              always 1.

This function displays a message to the user with an exclamation point icon.    The user may respond by
selecting the OK button, or may cancel the processing by selecting Cancel.

The Pause function is similar to the Message function, except for the addition of the Cancel button and
icon.
Example:
Pause("Change Disks", "Insert new disk into Drive A:")

which produces:

See Also:
Display, Exit, Message, Terminate

PlayMedia
Controls multimedia devices.
Syntax:

PlayMedia (mci-string)
Parameters:

(s) mci-string string to be sent to the multimedia device.
Returns:

(s)                              response from the device.

If the appropriate Windows multimedia extensions are present, this function can control multimedia
devices.    Valid command strings depend on the multimedia devices and drivers installed.    The basic
Windows multimedia package has a waveform device to play and record waveforms, and a sequencer
device to play MIDI files.    Refer to the appropriate documentation for information on command strings.

Many multimedia devices accept the WAIT or NOTIFY parameters as part of the command string:

WAIT Causes the system to stop processing input until the
requested operation is complete.    You cannot switch
tasks when WAIT is specified.

NOTIFY Causes the WIL program to suspend execution until
the requested operation completes.    You can perform
other tasks and switch between tasks when NOTIFY
is specified.

WAIT NOTIFY Same as WAIT

If neither WAIT nor NOTIFY is specified, the multimedia operation is started and control returns
immediately to the WIL program.

In general, if you simply want the WIL program to wait until the multimedia operation is complete, use the
NOTIFY keyword.    If you want the system to hang until the operation is complete, use WAIT.    If you just
want to start a multimedia operation and have the program continue processing, don't use either keyword.

The return value from PlayMedia is whatever string the driver returns.    This will depend on the particular
driver, as well as on the type of operation performed.
Example:
; Plays a music CD on a CDAudio
; drive, from start to finish
stat = PlayMedia("status cdaudio mode")
answer = 1
If stat == "playing"

answer = AskYesNo("CD Audio", "CD is Playing. Stop?")
If answer == 0 Then Exit

endif
PlayMedia("open cdaudio shareable alias donna notify")
PlayMedia("set donna time format tmsf")
PlayMedia("play donna from 1")
PlayMedia("close donna")
Exit
:cancel
PlayMedia("set cdaudio door open")

See Also:
Beep, PlayMidi, PlayWaveForm, Sounds

PlayMidi
Plays a MID or RMI sound file.
Syntax:

PlayMidi (filename, mode)
Parameters:

(s) filename name of the MID or RMI sound file.
(i) mode play mode (see below).

Returns:
(i)                  @TRUE if successful;
                        @FALSE if unsuccessful.

If Windows multimedia sound extensions are present, and MIDI-compatible hardware is installed, this
function will play a MID or RMI sound file.    If "filename" is not in the current directory and a directory is
not specified, the path will be searched to find the file.

If "mode" is set to 0, the WIL program will wait for the sound file to complete before continuing.    If "mode"
is set to 1, it will start playing the sound file and continue immediately.
Example:
PlayMidi("canyon.mid", 1)

See Also:
Beep, PlayMedia, PlayWaveForm, Sounds

PlayWaveForm
Plays a WAV sound file.
Syntax:

PlayWaveForm (filename, mode)
Parameters:

(s) filename name of the WAV sound file.
(i) mode play mode (see below).

Returns:
(i)                    @TRUE if successful;
                        @FALSE if unsuccessful.

If Windows multimedia sound extensions are present, and waveform-compatible hardware is installed,
this function will play a WAV sound file.    If "filename" is not in the current directory and a directory is not
specified, the path will be searched to find the file.    If "filename" is not found, the WAV file associated with
the "SystemDefault" keyword is played, (unless the "NoDefault" setting is on).

Instead of specifying an actual filename, you may specify a keyword name from the [Sound] section of the
WIN.INI file (eg, "SystemStart"), in which case the WAV file associated with that keyword name will be
played.   

"Mode" is a bitmask, composed of the following bits:

Mode Meaning

0 Wait for the sound to end before continuing.
1 Don't wait for the sound to end.    Start the sound and

immediately process more statements.
2 If sound file not found, do not play a default sound
9 Continue playing the sound forever, or until a

PlayWaveForm(" ", 0) statement is executed
16 If another sound is already playing, do not interrupt it.

Just ignore this PlayWaveForm request.

You can combine these bits using the binary OR operator.

The command PlayWaveForm(" ", 0) can be used at any time to stop sound.
Examples:
PlayWaveForm("tada.wav", 0)

PlayWaveForm("SystemDefault", 1 | 16)
See Also:

Beep, PlayMedia, PlayMidi, Sounds

Print
Instructs the application responsible for a file to print the file on the default printer.
Syntax:

Print(data file, directory, display mode, waitflag)
Parameters:

(s) data file            the name of the file to print.
(s) directory          current working directory (if applicable).
(i) display mode @NORMAL, @ICON, @ZOOMED, @HIDDEN.
(i) waitflag            @WAIT, @NOWAIT.

Returns:
(i)                                    @TRUE if the function completed.
                              @FALSE if an error occurred.

Instructs the application responsible for a file to print the file on the default printer.    The Windows
ShellExecute API is used.    It examines the extension of the data file, looks the extension up in the
Windows registry to determine the owning application, starts the owning application, and instructs it, also
according to data specified in the registry, to print the data file.    Most applications will send the printout to
the default printer, however the exact action taken by the application is under the applications own
control.

Applications that support this command or their setup programs will generally make the necessary
modifications to the Windows registry to allow this function to perform successfully.

Note:    The @WAIT parameter is not supported in 32 bit versions of this product.
Example:
FileCopy("C:\config.sys", "xxx.txt", 0)
a=Print("xxx.txt", DirGet(), @NORMAL, @WAIT)
FileDelete("xxx.txt")

See Also:
RunShell

Random
Computes a pseudo-random number.
Syntax:

Random (max)
Parameters:

(i) max largest desired integer number.
Returns:

(i)              unpredictable positive number.

This function will return a random integer between 0 and max.
Example:
a = Random(79)
Message("Random number between 0 and 79", a)

See Also:
Average, Max, Min

Registration Database Operations
In the early days of Windows, there was a single INI file, WIN.INI.    As Windows advanced, the WIN.INI
file became cluttered, and it was then subdivided into SYSTEM.INI, WIN.INI and a large number of
application specific INI files.

With the advent of OLE, Windows NT, and other advancements in operating system technology, the
simple INI files could not hold or organize the new and vast amounts of information required to run a
modern operating system.    For this reason, a new data storage structure was developed.    Sometimes
called the Registry or the Registration Database, this new file was designed to be able to hold and
organize large amounts of seeming random information.

The Registration Database is organized in a tree structure, much like a file system.    At every level "keys"
to the data exist.    The keys are analogous to the sub-directories in a file system.    A set of keys to a data
item look very much like a path to a filename.

In Windows, the Registration Database may be viewed and altered with the "RegEdit" utility.    It requires a
"/v" parameter, as in      "regedit.exe /v", to enable the edit mode of the utility.    In Windows NT and
Windows 95, there exists the "RegEdt32" utility that allows access to the Registration Database.    Neither
of these utilities can be found in the normally installed Program Manager groups, and must be ferreted out
on your own.

CAUTION:    The reason that these utilities are not made easily accessible is that it is trivially easy to
make a modification to the database that will completely ruin a Windows, Windows 95    or Windows NT
installation, and may require a complete re-install of the Windows version to get the system running
again.    It is best to study the database and understand what is going on, instead of perhaps using a
somewhat common "trial and error" method of making changes.

There are two ways to query and set information in the Registration Database.    The easy way is to
simply base all operations on an always open root key.    Using just the RegQueryValue and
RegSetValue functions you can    alter all data associated with pre-defined keys.

The other more complicated and more flexible method is to open or create a desired key, using the
RegOpenKey or RegCreateKey functions, modify the database with other registration functions, passing
it a handle to the key, and then finally close the database with the RegCloseKey function.

Most of the registration functions accept both a handle to a key and a subkey string which further defines
a lower key.    Oftentimes the subkey string is simply set to null (empty quotes), and the handle points
directly to the destination.    At other times, one of the pre-defined roots of the database is passed as the
handle and the subkey string points all the way down to the desired data item.

Pre-defined keys are provided.    Windows has a single root key that is always open.    Its handle can be
accessed via the built-in WIL constant @REGROOT.      Windows NT and Windows 95    provides several
keys, as shown in the table below:

Windows handles to always open keys
@REGROOT Root of the Registration Database.

32 bit Windows handles to always open keys
@REGMACHINE Root of the machine section of the

Registration Database.
@REGCLASSES Shortcut to the classes sub-section.
@REGUSERS Root of the user section of the

Registration Database.

@REGCURRENT Shortcut to the current users
sub-section.

Note: Windows NT and Windows 95    added named data types to the registration database entries.    As
a result there is a special way to access the named data entries in Windows NT and Windows 95
registration databases.    The steps are as follows:

1) Open a key pointing to the group of data items that contains
the desired data item.

2) Use the RegSetValue or the RegQueryValue functions to access
the data value.    The "subkey-string" must contain only the
data item name enclosed in square brackets.

3) Be sure to close the key when operations are complete.

For example, here is a WIL script which modifies the default printer in Windows NT.

newprt = "LJ3,winspool,LPT1:" ;the printer you want to assign as the
 ;default

regkey = RegOpenKey(@REGCURRENT, "Software\Microsoft\Windows
NT\CurrentVersion\Windows")

defprt = RegQueryValue(regkey, "[Device]")
Message("Previous Default printer", defprt)
RegSetValue(regkey, "[Device]", newprt)
defprt = RegQueryValue(regkey, "[Device]")
Message("New Default printer", defprt)
RegCloseKey(regkey)

RegApp {*32}
Creates registry entries for a program under "App Paths".
Syntax:

RegApp(program-name, path)
Parameters:

(s) program-name the name of an executable program (EXE), optionally containing a
path.

(s) path                        optional desired "PATH" setting for the specified program.
Returns:

(i)                                @TRUE        Entry was created;
  @FALSE    Operation failed.

This function creates (or updates) a sub-key in the registration database for the specified program, of the
form PROGNAME.EXE, under the key:

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\App Paths\

If "program-name" does not contain a path, the function will search for it on the path.

The function creates a "(Default)" value for the key, containing the full path to the specified program.

If the "path" parameter is not a blank string (""), the function also creates a "Path" value for the key.    This
should contain one or more directories (separated by semi-colons) which you want to be prepended to the
existing "PATH" environment variable when the program is run.

Example:
RegApp("excel.exe", "c:\excel;c:\word")

See Also:
InstallFile, RegOpenKey, RegCloseKey, RegDeleteKey, RegSetValue, RegQueryValue,
RegQueryKey, and the section on Registration Database Operations

RegCloseKey
Closes a key to the Registration Database.
Syntax:

RegCloseKey(handle)
Parameters:

(i) handle handle to a registration database key.
Returns:

(i)                      @TRUE    Database was closed.
                            @FALSE    Close failed.

The RegCloseKey function closes a key to the Registration Database.    The key is opened or created
with the RegOpenKey or the RegCreateKey functions.    Registration Database changes made using a
key are saved when the key is closed.
Example:
key=RegOpenkey(@RegRoot, "txtfile")
b=RegQueryValue(key, "shell\open")
RegCloseKey(key)
Message("Default textfile editor is", b)

See Also:
RegOpenKey, RegCreateKey, RegSetValue, RegQueryValue, and the section on Registration
Database Operations

RegCreateKey
Returns a handle to a new registration database key.
Syntax:

RegCreateKey(handle, subkey-string)
Parameters:

(i) handle handle to a registration database key.
(s) subkey-string a path from the key provided to the desired key.

Returns:
(i) handle a handle to the new key.

The RegCreateKey function will create and open a desired key into the Registration Database.    If the
key already exists, RegCreateKey will open it.    When using RegCreateKey you must pass a pre-
existing, open key to create a new key.    A pre-defined key may be used.
Example:
; Associate DIZ files with the default textfile editor
key=RegCreatekey(@REGROOT, ".diz")
RegSetValue(key, "", "txtfile")
RegClosekey(key)

; The preceding is actually a hard way to do ...
RegSetValue(@REGROOT, ".diz", "txtfile")

See Also:
RegOpenKey, RegCloseKey, RegDeleteKey, RegSetValue, RegQueryValue, RegQueryKey, and
the section on Registration Database Operations

RegDeleteKey
Deletes a key and data items associated with the key.
Syntax:

RegDeleteKey(handle, subkey-string)
Parameters:

(i) handle an open registration database key (see below).
(s) subkey-string a path from the key provided to the desired key.

Returns:
(i) @TRUE      Key was deleted.

@FALSE      Key was not found.

The RegDeleteKey function will delete a pre-existing key from the Registration Database. If the key does
not exist, RegDeleteKey will fail.    When using RegDeleteKey you must pass a pre-existing, open key to
access the desired key.    A pre-defined key may be used.
Example:
; Delete default operation for *.DIZ files
; from the registration database
RegDeleteKey(@REGROOT, ".diz")

See Also:
RegOpenKey, RegCreateKey, RegCloseKey, RegDelValue and the section on Registration
Database Operations

RegDelValue {*32}
Deletes a named value data item for the specified subkey from the registry.
Syntax:

RegDelValue(handle, subkey-string)
Parameters:

(i) handle                    handle to a registration database key.
(s) subkey-string a path from the key provided to the desired key.

Returns:
(i)                            @TRUE    Data item was deleted;
                                  @FALSE Data was not found.

"Subkey-string" must be enclosed in square brackets (see RegSetValue).    "Subkey-string" of "[]" deletes
the "default" value.
Example:
RegDelValue(@REGROOT, ".diz")

See Also:
RegOpenKey, RegCreateKey, RegCloseKey, RegSetValue, RegQueryValue, and the section on
Registration Database Operations

RegOpenKey
Returns a handle to an existing registration database key.
Syntax:

RegOpenKey(handle, subkey-string)
Parameters:

(i) handle handle to a registration database key.
(s) subkey-string a path from the key provided to the desired key.

Returns:
(i) key a handle to the new key.

The RegOpenKey function will open a desired key into the Registration Database.    If the key does not
exist, RegOpenKey will fail.    When using RegOpenKey you must pass a pre-existing, open key to
create a new key.    A pre-defined key may be used.
Example:
; Find default text editor
key=RegOpenkey(@RegRoot, "txtfile")
who=RegQueryValue(key, "shell\open\command")
RegClosekey(key)
Message("Default text file editor is", who)
;
; The preceding is actually a hard way to do ...
who=RegQueryValue(@REGROOT, "txtfile\shell\open\command")
Message("Default text file editor is", who)

See Also:
RegCreateKey, RegCloseKey, RegDeleteKey, RegSetValue, RegQueryValue, RegQueryKey,
and the section on Registration Database Operations

RegQueryBin {*32}
Returns binary value at subkey position.
Syntax:

RegQueryBin(handle, subkey-string)
Parameters:

(i) handle handle to a registration database key.
(s) subkey-string a path from the key provided to the desired key.

Returns:
(s) contents of data item at key position desired.

The value is returned as a space-delimited string of hex bytes; e.g.:
"AB 45 3E 01".
Example:
value = RegQueryBin(@REGCURRENT, "Control Panel\Appearance\[CustomColors]")
Message("CustomColors", value)

See Also:
RegQueryDword, RegQueryValue

RegQueryDword {*32}
Returns DWORD value at subkey position.
Syntax:

RegQueryDword(handle, subkey-string)
Parameters:

(i) handle handle to a registration database key.
(s) subkey-string a path from the key provided to the desired key.

Returns:
(i) contents of data item at key position desired.

Example:
value = RegQueryDword(@REGCURRENT, "Control Panel\Desktop\[ScreenSaveUsePassword]")
Message("ScreenSaveUsePassword", value)

See Also:
RegQueryBin, RegQueryValue

RegQueryItem {*32}
Returns a list of named data items for a subkey.
Syntax:

RegQueryItem(handle, subkey-string)
Parameters:

(i) handle handle to a registration database key.
(s) subkey-string a path from the key provided to the desired key.

Returns:
(s) tab-delimited list of named data items for the specified subkey-string.

Example:
items = RegQueryItem(@REGCURRENT, "Software\Microsoft\Windows\CurrentVersion\
Extensions")
item = TextSelect("Select an item", items, @TAB)
value = RegQueryValue(@REGCURRENT, "Software\Microsoft\Windows\CurrentVersion\
Extensions[%item%]")
Message(item, value)

See Also:
RegQueryValue, and the section on Registration Database Operations

RegQueryKey
Returns subkeys of the specified key.
Syntax:

RegQueryKey(handle, index)
Parameters:

(i) handle handle to a registration database key.
(i) index zero-based index into list of subkeys.

Returns:
(s) name of desired subkey.

Use this function to enumerate the subkeys of a desired key.    The first subkey is referenced by index
number 0, the second key by 1, and so on.    If the key does not exist, a null string will be returned.
Example:
for i=0 to 100

a=RegQueryKey(@regroot, I)
Display(2, "Root subkey number %i%", a)

next
See Also:

RegOpenKey, RegCreateKey, RegCloseKey, RegDeleteKey, RegSetValue, RegQueryValue, and
the section on Registration Database Operations

RegQueryValue
Returns data item string at subkey position.
Syntax:

RegQueryValue(handle, subkey-string)
Parameters:

(i) handle handle to a registration database key.
(s) subkey-string a path from the key provided to the desired key.

Returns:
(s) contents of data item at key position desired.

Use this function to retrieve data items from the Registration Database.    The function will fail if the data
item does not exist.

Note: Windows NT and Windows 95    added named data types to the registration database entries.    As
a result there is a special way to access the named data entries in Windows NT and Windows 95
registration databases.    The steps are as follows:

1) Open a key pointing to the group of data items that contains
the desired data item.

2) Use the RegSetValue or the RegQueryValue functions to access
the data value.    The "subkey-string" must contain only the
data item name enclosed in square brackets.

3) Be sure to close the key when operations are complete.

For example, here is a WIL script which modifies the default printer in Windows NT.

newprt = "LJ3,winspool,LPT1:" ;the printer you want to assign as the
 ;default

regkey = RegOpenKey(@REGCURRENT, "Software\Microsoft\Windows
NT\CurrentVersion\Windows")

defprt = RegQueryValue(regkey, "[Device]")
Message("Previous Default printer", defprt)
RegSetValue(regkey, "[Device]", newprt)
defprt = RegQueryValue(regkey, "[Device]")
Message("New Default printer", defprt)
RegCloseKey(regkey)

Example:
a1=RegOpenkey(@RegRoot, "crdfile")
a2=RegOpenkey(a1, "shell\print")
c=RegQueryValue(a2, "command")
RegCloseKey(a2)
RegClosekey(a1)
Message("Cardfile Print Processor is", c)
;
; The preceding is the hard way to do the following
b=RegQueryValue(@REGROOT, "crdfile\shell\print\command")
Message("Cardfile Print Processor is", b)

See Also:
RegOpenKey, RegCreateKey, RegCloseKey, RegDeleteKey, RegDelValue, RegSetValue,
RegQueryValue, and the section on Registration Database Operations

RegSetBin {*32}
Sets a binary value in the Registration Database.
Syntax:

RegSetBin(handle, subkey-string, value)
Parameters:

(i) handle handle to a registration database key.
(s) subkey-string a path from the key provided to the desired key.
(s) value data to be stored into the database at desired key.

Returns:
(i) always 1.

The value is specified as a space-delimited string of hex bytes; e.g.:
"AB 45 3E 01".
Example:
RegSetBin(@REGCURRENT, "A Test Key\[My Binary Value]", "00 01 22 AB FF 00")

See Also:
RegSetDword , RegSetValue

RegSetDword {*32}
Sets a DWORD value in the Registration Database.
Syntax:

RegSetDword(handle, subkey-string, value)
Parameters:

(i) handle handle to a registration database key.
(s) subkey-string a path from the key provided to the desired key.
(s) value data to be stored into the database at desired key.

Returns:
(i) always 1.

Example:
RegSetDword(@REGCURRENT, "A Test Key\[My DWORD Value]", 32)

See Also:
RegSetBin, RegSetValue

RegSetValue
Sets the value of a data item in the Registration Database.
Syntax:

RegSetValue(handle, subkey-string, value)
Parameters:

(i) handle handle to a registration database key.
(s) subkey-string a path from the key provided to the desired key.
(s) value data to be stored into the database at desired key.

Returns:
(i)                            @TRUE    Data item was stored;
                                      @FALSE    Operation failed.

Use this function to store data items into the Registration Database.    If the desired key does not exist, the
function will create it.

Note: Windows NT and Windows 95 have added named data types to the registration database entries.   
As a result there is a special way to access the named data entries in Windows NT and Windows 95
registration databases.    The steps are as follows:

1) Open a key pointing to the group of data items that contains
the desired data item.

2) Use the RegSetValue or the RegQueryValue functions to access
the data value.    The "subkey-string" must contain only the
data item name enclosed in square brackets.

3) Be sure to close the key when operations are complete.

For example, here is a WIL script which modifies the default printer in Windows NT.

newprt = "LJ3,winspool,LPT1:" ;the printer you want to assign as the
 ;default

regkey = RegOpenKey(@REGCURRENT, "Software\Microsoft\Windows
NT\CurrentVersion\Windows")

defprt = RegQueryValue(regkey, "[Device]")
Message("Previous Default printer", defprt)
RegSetValue(regkey, "[Device]", newprt)
defprt = RegQueryValue(regkey, "[Device]")
Message("New Default printer", defprt)
RegCloseKey(regkey)

Example:
; Associate DIZ files with the default textfile editor
key=RegCreatekey(@REGROOT, ".diz")
RegSetValue(key, "", "txtfile")
RegClosekey(key)

; The preceding is actually a hard way to do ...
RegSetValue(@REGROOT, ".diz", "txtfile")

See Also:
RegOpenKey, RegCreateKey, RegCloseKey, RegDeleteKey, RegDelValue, RegQueryValue,
RegQueryKey, and the section on Registration Database Operations

Reload {*M}
Reloads menu file(s).
Syntax:

Reload ()
Parameters:

(none)
Returns:

(i) always 1.

This function is used to reload the WIL Interpreter's menu file(s).    It is useful after editing a menu file, to
cause the changes to immediately take effect.

Note1:    This command does not take effect until the WIL program has completed, regardless of where
the command may appear in the program.

Note2:    This command is not part of the WIL Interpreter package, but is documented here because it has
been implemented in many of the shell or file manager-type applications which use the WIL Interpreter.
Example:
RunZoomWait("notepad.exe", "c:\win\cmdpost.cpm")
Reload()

Return
Used to return from a Call to the calling program or to return from a GoSub :label.
Syntax:

Return
Parameters:

(none)
Returns:

(not applicable)

The Return statement returns to the statement following the most recently executed Call or GoSub
statement.    If there is no matching Call or GoSub, an Exit is assumed.
Example:
Display(2, "End of subroutine", "Returning to MAIN.WBT")
Return

See Also:
Call, Exit, GoSub

Run
Runs a program as a normal window.
Syntax:

Run (program-name, parameters)
Parameters:

(s) program-name the name of the desired .EXE, .COM, .PIF, .BAT file, or a data file.
(s) parameters optional parameters as required by the application.

Returns:
(i)                                  @TRUE if the program was found;
  @FALSE if it wasn't.

Use this command to run an application.

If the drive and path are not part of the program name, the current directory will be examined first,
followed by the Windows and Windows System directories, and then the DOS path will be searched to
find the desired executable file.

If the "program-name" doesn't have an extension of .EXE, .COM, .PIF, or .BAT, it will be run in
accordance with whatever is in the [Extensions] section of the WIN.INI file.    When this happens, any
"parameters" you specified are ignored.
Examples:
Run("notepad.exe", "abc.txt")

Run("clock.exe", "")

Run("paint.exe", "pict.msp")

See Also:
RunShell, AppExist, RunHide, RunIcon, RunWait, RunZoom, ShellExecute    WinClose,
WinExeName, WinWaitClose

RunEnviron
Launches a program and has it inherit the current environment as set with the EnvironSet command.
Syntax:

RunEnviron(program-name, params, display mode, waitflag)
Parameters:

(s) program-name the name of the desired Windows EXE file.
(i) params optional parameters as required by the application.
(i) display mode @NORMAL, @ICON, @ZOOMED, @HIDDEN.
(i) waitflag @WAIT, @NOWAIT.

Returns:
(i)                                @TRUE    Function was executed normally.
  @FALSE    Function failed.

Use this function to launch a program with the current environment.

Note1:    Only Windows EXEs may be executed with this command.    It is possible to change the
environment for DOS programs by launching a DOS BAT file that includes DOS SET statements to alter
the environment settings before executing the DOS program.    See Note 2.    Use the Run commands to
launch DOS programs and BAT files.

Note2:    When running 32 bit versions of WinBatch, this function is identical to the RunShell function.

Note3: To alter the path for DOS programs, all that is required is a simple batch file, and the usual WIL
Run command.    Assuming the case where one wished to run "command.com" with the path    "c:\
special", a generic batch file as shown below will suffice, along with passing all the information required
as parameters in the WIL Run command.

DoPath.bat      file listing
SET PATH=%1
ECHO %PATH%
PAUSE
%2      %3      %4      %5      %6      %7      %8      %9

WIL Run Command
Run("dopath.bat", "c:\special    command.com")

HINT:    Use the WWENVMAN.Dll, WIL Environment extender, for enhanced environment management.   
Further explanations are in WWWENV.HLP.
Example:
Path=Environment("PATH")
NewPath=StrCat("X:\EXCEL;", Path)
;Clear DUMMY variable to free up environment space
EnvironSet("DUMMY","")
EnvironSet("PATH", NewPath)
a = RunEnviron("X:\Excel.exe", " ", @NORMAL, @WAIT)

See Also:
RunShell, Run, RunWait, ShellExecute    Environment, EnvironSet

RunExit
Exits Windows, runs a DOS program or batch file, and restarts Windows when DOS program or batch file
exits.   
Great for running uncooperative DOS applications outside of Windows.
Syntax:

RunExit(program-name, parameters)
Parameters:

(s) program-name the name of the desired DOS BAT, COM or EXE file.
(s) parameters optional parameters as required by the application.

Returns:
(i)  @FALSE if the program wasn't found, and the command

was not executed.    If the
  commands works, the batch file is terminated.

Use this command to exit Windows and run a DOS application.    Once the DOS application has finished,
Windows will be restarted.    The DOS path will be searched to find the desired executable file.

Note:    This command is not supported in the 32 bit version of WinBatch.
Example:
DirChange("C:\DOSGAMES")
RunExit("arcade.exe", "")

See Also:
IntControl 66 67 & 68, EndSession

RunHide
Runs a program as a hidden window.
Syntax:

RunHide (program-name, parameters)
Parameters:

(s) program-name the name of the desired .EXE, .COM, .PIF, .BAT file, or a data file.
(s) parameters optional parameters as required by the application.

Returns:
(i) @TRUE if the program was found;
      @FALSE if it wasn't.

Use this command to run an application as a hidden window.

If the drive and path are not part of the program name, the current directory will be examined first,
followed by the Windows and Windows System directories, and then the DOS path will be searched to
find the desired executable file.

If the "program-name" doesn't have an extension of .EXE, .COM, .PIF, or .BAT, it will be run in
accordance with whatever is in the [Extensions] section of the WIN.INI file.    When this happens, any
"parameters" you specified are ignored.

Note: When this command launches an application, it merely informs it that you want it to run as a
hidden window.    Whether or not the application honors your wish is beyond RunHide's control.
Examples:
RunHide("notepad.exe", "abc.txt")

RunHide("clock.exe", "")

RunHide("paint.exe", "pict.msp")
See Also:

RunShell, Run, RunHideWait, RunIcon, RunZoom, ShellExecute    WinClose, WinExeName,
WinHide, WinWaitClose

RunHideWait
Runs a program as a hidden window, and waits for it to close.
Syntax:

RunHideWait (program-name, parameters)
Parameters:

(s) program-name the name of the desired .EXE, .COM, .PIF, .BAT file, or a data file.
(s) parameters optional parameters as required by the application.

Returns:
(i) @TRUE if the program was found;

@FALSE if it wasn't.

Use this command to run an application as a hidden window.    The WIL program will suspend processing
until the application is closed.

If the drive and path are not part of the program name, the current directory will be examined first,
followed by the Windows and Windows System directories, and then the DOS path will be searched to
find the desired executable file.

If the "program-name" doesn't have an extension of .EXE, .COM, .PIF, or .BAT, it will be run in
accordance with whatever is in the [Extensions] section of the WIN.INI file.    When this happens, any
"parameters" you specified are ignored.

Note: When this command launches an application, it merely informs it that you want it to run as a
hidden window.    Whether or not the application honors your wish is beyond RunHideWait's control.
Example:
RunHideWait(Environment("COMSPEC"), "/c dir *.exe> temp.txt")
Print("temp.txt","",@NORMAL,@NOWAIT)

See Also:
RunShell, RunHide, RunIconWait, RunWait, RunZoomWait, ShellExecute    WinWaitClose

RunIcon
Runs a program as an iconic (minimized) window.
Syntax:

RunIcon (program-name, parameters)
Parameters:

(s) program-name the name of the desired .EXE, .COM, .PIF, .BAT file, or a data file.
(s) parameters optional parameters as required by the application.

Returns:
(i) @TRUE if the program was found;

@FALSE if it wasn't.

Use this command to run an application as an icon.

If the drive and path are not part of the program name, the current directory will be examined first,
followed by the Windows and Windows System directories, and then the DOS path will be searched to
find the desired executable file.

If the "program-name" doesn't have an extension of .EXE, .COM, .PIF, or .BAT, it will be run in
accordance with whatever is in the [Extensions] section of the WIN.INI file.    When this happens, any
"parameters" you specified are ignored.

Note: When this command launches an application, it merely informs it that you want it to begin as an
icon.    Whether or not the application honors your wish is beyond RunIcon's control.
Examples:
RunIcon("notepad.exe", "abc.txt")

RunIcon("clock.exe", "")

RunIcon("paint.exe", "pict.msp")
See Also:

RunShell, IconArrange, Run, RunHide, RunIconWait, RunZoom, ShellExecute    WinClose,
WinExeName, WinIconize, WinWaitClose

RunIconWait
Runs a program as an iconic (minimized) window, and waits for it to close.
Syntax:

RunIconWait (program-name, parameters)
Parameters:

(s) program-name the name of the desired .EXE, .COM, .PIF, .BAT file, or a data file.
(s) parameters optional parameters as required by the application.

Returns:
(i) @TRUE if the program was found;

@FALSE if it wasn't.

Use this command to run an application as an icon.    The WIL program will suspend processing until the
application is closed.

If the drive and path are not part of the program name, the current directory will be examined first,
followed by the Windows and Windows System directories, and then the DOS path will be searched to
find the desired executable file.

If the "program-name" doesn't have an extension of .EXE, .COM, .PIF, or .BAT, it will be run in
accordance with whatever is in the [Extensions] section of the WIN.INI file.    When this happens, any
"parameters" you specified are ignored.

Note: When this command launches an application, it merely informs it that you want it to begin as an
icon.    Whether or not the application honors your wish is beyond RunIconWait's control.
Example:
RunIconWait(Environment("COMSPEC"), "/c dir *.exe> temp.txt")
Print("temp.txt","",@NORMAL,@NOWAIT)

See Also:
RunShell, IconArrange, RunHideWait, RunIcon, RunWait, RunZoomWait, ShellExecute   
WinWaitClose

RunShell
Runs a program via the Windows ShellExecute command
Syntax:

RunShell(program-name, params, directory, display mode, waitflag)
Parameters:

(s) program-name the name of the desired .EXE, .COM, .PIF, .BAT file or a data file.
(s) params optional parameters as required by the application.
(s) directory current working directory (if applicable).
(i) display mode @NORMAL, @ICON, @ZOOMED, @HIDDEN.
(i) waitflag @WAIT, @NOWAIT.

Returns:
(i) @TRUE if the program was found;

@FALSE if it wasn't.

The Windows ShellExecute API is used.    If a data file is specified instead of an executable file (i.e.    EXE,
COM, PIF, or BAT file), the Windows ShellExecute function examines the extension of the data file, looks
the extension up in the Windows registry to determine the owning application and starts the owning
application, passing the data file name as a parameter.    Applications that support this command or their
setup programs will generally make the necessary modifications to the Windows registry to allow this
function to perform successfully.

If the drive and path are not part of the program name, the current directory will be examined first,
followed by the Windows and Windows System directories, and then the DOS path will be searched to
find the desired executable file.

If the @WAIT parameter is used, the WIL program will suspend processing until the application is closed.

Note: When this command launches an application, it merely informs it how you wish it to appear on the
screen.    Whether or not the application honors your wish is beyond this function's control.
Example:
RunShell("NOTEPAD.EXE", "CONFIG.SYS", "C:\", @NORMAL, @NOWAIT)

See Also:
Print, Run, RunWait, ShellExecute

RunWait
Runs a program as a normal window, and waits for it to close.
Syntax:

RunWait (program-name, parameters)
Parameters:

(s) program-name the name of the desired .EXE, .COM, .PIF, .BAT file, or a data file.
(s) parameters optional parameters as required by the application.

Returns:
(i) @TRUE if the program was found;

@FALSE if it wasn't.

Use this command to run an application.    The WIL program will suspend processing until the application
is closed.

If the drive and path are not part of the program name, the current directory will be examined first,
followed by the Windows and Windows System directories, and then the DOS path will be searched to
find the desired executable file.

If the "program-name" doesn't have an extension of .EXE, .COM, .PIF, or .BAT, it will be run in
accordance with whatever is in the [Extensions] section of the WIN.INI file.    When this happens, any
"parameters" you specified are ignored.
Example:
RunWait(Environment("COMSPEC"), "/c dir *.exe> temp.txt")
Print("temp.txt","",@NORMAL,@WAIT)
FileDelete("temp.txt")

See Also:
RunShell, AppWaitClose, Run, RunHideWait, RunIconWait, RunZoomWait, ShellExecute   
WinWaitClose

RunZoom
Runs a program as a full-screen (maximized) window.
Syntax:

RunZoom (program-name, parameters)
Parameters:

(s) program-name the name of the desired .EXE, .COM, .PIF, .BAT file, or a data file.
(s) parameters optional parameters as required by the application.

Returns:
(i) @TRUE if the program was found;

@FALSE if it wasn't.

Use this command to run an application as a full-screen window.

If the drive and path are not part of the program name, the current directory will be examined first,
followed by the Windows and Windows System directories, and then the DOS path will be searched to
find the desired executable file.

If the "program-name" doesn't have an extension of .EXE, .COM, .PIF, or .BAT, it will be run in
accordance with whatever is in the [Extensions] section of the WIN.INI file.    When this happens, any
"parameters" you specified are ignored.

Note: When this command launches an application, it merely informs it that you want it to be maximized
to full-screen.    Whether or not the application honors your wish is beyond RunZoom's control.
Examples:
RunZoom("notepad.exe", "abc.txt")

RunZoom("clock.exe", "")

RunZoom("paint.exe", "pict.msp")
See Also:

RunShell, Run, RunHide, RunIcon, RunZoomWait, ShellExecute    WinClose, WinExeName,
WinWaitClose, WinZoom

RunZoomWait
Runs a program as a full-screen (maximized) window, and waits for it to close.
Syntax:

RunZoomWait (program-name, parameters)
Parameters:

(s) program-name the name of the desired .EXE, .COM, .PIF, .BAT file, or a data file.
(s) parameters optional parameters as required by the application.

Returns:
(i) @TRUE if the program was found;

@FALSE if it wasn't.

Use this command to run an application as a full-screen window.    The WIL program will suspend
processing until the application is closed.

If the drive and path are not part of the program name, the current directory will be examined first,
followed by the Windows and Windows System directories, and then the DOS path will be searched to
find the desired executable file.

If the "program-name" doesn't have an extension of .EXE, .COM, .PIF, or .BAT, it will be run in
accordance with whatever is in the [Extensions] section of the WIN.INI file.    When this happens, any
"parameters" you specified are ignored.

Note: When this command launches an application, it merely informs it that you want it to be maximized
to full-screen.    Whether or not the application honors your wish is beyond RunZoomWait's control.
Example:
RunZoomWait(Environment("COMSPEC"), "/c dir *.exe> temp.txt")
Print("temp.txt","",@NORMAL,@NOWAIT)

See Also:
RunShell, RunHideWait, RunIconWait, RunWait, RunZoom, ShellExecute    WinWaitClose

Select
The Select statement allows selection among multiple blocks of statements.
Syntax:

Select expression
case expression

statements
break

case expression
statements
break

EndSelect
Parameters:

(s) expression an expression that must evaluate to an integer.

The Select statement allows selection among multiple blocks of statements, depending on the value of an
expression.    The expression must evaluate to an integer.

The Select statement causes the statements in the select body to be scanned by the parser as it
attempts to find a case statement.    When a case statement is found, the expression following the case
statement is evaluated, and if the expression evaluates to the same value as the expression following the
Select statement, execution of the following statements is initiated.    The EndSelect statement
terminates the Select structure.

If a matching case expression was found, and execution was initiated, the following statements will affect
continued execution:

Break Terminates the Select structure and transfers control to the statement following the
next matching EndSelect.

Continue Stops execution and resumes scanning for a case statement.
Case Ignored.    Treated as a comment.
EndSelect Terminates the Select structure and transfers control to the next statement.

Note:    Switch and Select may be used interchangeably.    They are synonyms for the same statement.

EndSwitch, EndSelect, "End Switch", and "End Select" may be used interchangeably.
Example:
response=AskLine("Select", "Enter a number between one and three", 1)
Select response

case 1
Message("Select", "Case 1 entered")
break

case 2
Message("Select", "Case 2 entered")
break

case 3
Message("Select", "Case 3 entered")
break

case response ; default case
Message("Select", "Default case entered")
break

End Select
See Also:

If, For, GoSub, While

SendKey
Sends keystrokes to the currently active window.
Syntax:

SendKey (char-string)
Parameters:

(s) char-string string of regular and/or special characters.
Returns:

(i) always 0.

Note1:    SendKey will send keystrokes to the currently active window.    For many applications, the
related functions, SendKeysChild, SendKeysTo or SendMenusTo may be better alternatives.   

This function is used to send keystrokes to the active window, just as if they had been entered from the
keyboard.    Any alphanumeric character, and most punctuation marks and other symbols which appear on
the keyboard, may be sent simply by placing it in the "char-string".        In addition, the following special
characters, enclosed in "curly" braces, may be placed in "char-string" to send the corresponding special
characters:

Key SendKey equivalent

~ {~} ; This is how to send a ~
! {!} ; This is how to send a !
^ {^} ; This is how to send a ^
+ {+} ; This is how to send a +
{ { { } ; This is how to send a {
} { } } ; This is how to send a }
Alt {ALT}
Backspace {BACKSPACE} or {BS}
Clear {CLEAR}
Delete {DELETE} or {DEL}
Down Arrow {DOWN}
End {END}
Enter {ENTER} or ~
Escape {ESCAPE} or {ESC}
F1 through F16 {F1} through {F16}
Help {HELP}
Home {HOME}
Insert {INSERT} or {INS}
Left Arrow {LEFT}
Page Down {PGDN}
Page Up {PGUP}
Right Arrow {RIGHT}
Space {SPACE} or {SP}
Tab {TAB}
Up Arrow {UP}

To enter an Alt, Control, or Shift key combination, precede the desired character with one or more of the
following symbols:

Alt !
Control ^

Shift +

To enter Alt-S:
SendKey("!s")

Note2: You should, in general, use lower-case letters to represent Alt-key combinations and other menu
shortcut keys as that is the normal keys used when typing to application.    For example    "!fo" is
interpreted as Alt-f-o, as one might expect.    However    "!FO" is interpreted as Alt-Shift-f-o, which is not a
normal keystroke sequence.

To enter Ctrl-Shift-F7:
SendKey("^+{F7}")

You may also repeat a key by enclosing it in braces, followed by a space and the total number of
repetitions desired.

To type 20 asterisks:
SendKey("{* 20}")

To move the cursor down 8 lines:
SendKey("{DOWN 8}")

Examples:
; start Notepad, and use *.* for filenames
Run("notepad.exe", "")
SendKey("!fo*.*~")

In those cases where you have an application which can accept text pasted in from the clipboard, it will
often be more efficient to use the ClipGet function:

Run("notepad.exe", "")
crlf = StrCat(Num2Char(13), Num2Char(10))
; copy some text to the clipboard
ClipPut("Dear Sirs:%crlf%%crlf%")
; paste the text into Notepad (using Ctrl-v)
SendKey("^v")

A WIL program cannot send keystrokes to its own WIL Interpreter window.

Note3:    If your SendKey statement doesn't seem to be working (e.g., all you get are beeping noises),
you may need to place a WinActivate statement before the SendKey statement to insure that you are
sending the keystrokes to the correct window, or you may try using the SendKeysTo    or SendKeysChild
function.

Note4:    When sending keystrokes to a DOS box, the DOS box must be in a window (Not Full Screen).   
Most keystrokes can be sent to a full screen DOS box, however, SendKey can only send the ENTER key
to a Windowed DOS Box.   
See Also:

SendKeysTo, SendKeysChild, SendMenusTo, KeyToggleSet, SnapShot, WinActivate

SendKeysChild
Sends keystrokes to the active child window.
Syntax:

SendKeysChild(main-windowname, child windowname, sendkey string)
Parameters:

(s) main- windowname the initial part of, or an entire parent window name.
(s) child-windowname the initial part of, or an entire child window name.
(s) sendkey string string of regular and/or special characters.

Returns:
(i) always 0

Use this function to send keystrokes to a particular child window.    This function is similar to SendKey,
but the desired parent and child windows will be activated before sending any keys in lieu of using
WinActivChild.    Consequently, a previous WinActivChild command will be overridden by this function.   
See the SendKey function for a description of the "sendkey string".

Note: "main-windowname" and "child-windowname" are the initial parts of their respective window
names, and may be complete window names.    They are case-sensitive.    You should specify enough
characters so that the window names will match only one existing window of its type.    If a windowname
matches more than one window, the most recently accessed window which it matches will be used.
Example:
; Start Windows File Manager - the hard way
; This code activates Program Manager, then
; activates the "Main" child window. Sending an
; "f" should (hopefully) activate the File Manager
; icon. The Enter key (abbreviated as ~) runs it.
SendKeysChild("Program Manager", "Main", "f~")

See Also:
SendKeysTo, SendKey, SendMenusTo,    KeyToggleSet, SnapShot, WinActivate

SendKeysTo
Sends keystrokes to a "parent-windowname".
Syntax:

SendKeysTo(parent-windowname, sendkey string)
Parameters:

(s) parent-windowname the initial part of, or an entire parent window name.
(s) sendkey string string of regular and /or special characters.

Returns:
(i) always 0.

Use this function to send keystrokes to a particular window.    This function is similar to SendKey, but the
correct "parent-windowname" will be activated before sending any keys in lieu of using WinActivate.   
Consequently, a previous WinActivate command will be overridden by this function. See the SendKey
function for a description of the "sendkey string".

Note: "parent-windowname" is the initial part of a window name, and may be a complete window name.   
It is case-sensitive.    You should specify enough characters so that "windowname" matches only one
existing window.    If it matches more than one window, the most recently accessed window which it
matches will be used.
Example:
run("notepad.exe","")
SendKeysTo("Notepad", "aBcDeF")

See Also:
SendKey, SendKeysChild, SendMenusTo,    KeyToggleSet, SnapShot, WinActivate

SendMenusTo
Activates a window and sends a specified menu option.
Syntax:

SendMenusTo(windowname, menuname)
Parameters:

(s) windowname the initial part of, or an entire parent window name.
(s) menuname windows message to be posted or performed.

Returns:
(i) always 0.

Use this function to access drop down menus on a window.    The function activates the "windowname"
application window, searches its menus and sends the specified windows message for the menu
operation.

To construct the "menuname" parameter simply string together all the menu options selected to access
the desired function.    All punctuation and special characters are ignored, as well as any possible
"hotkeys" used to access the function via the keyboard.    For example, most Windows applications have a
"File" menu and an "Open" menu.    To construct the "menu name" parameter, simply string together the
words, making "FileOpen", or for better readability use "File Open" - the spaces are ignored.

Note: "windowname" is the initial part of a window name, and may be a complete window name.    It is
case-sensitive.    You should specify enough characters so that "windowname" matches only one existing
window.    If it matches more than one window, the most recently accessed window which it matches will
be used.
Example:
Run("notepad.exe", "c:\config.sys")
SendMenusTo("Notepad", "Edit Select All")
SendMenusTo("Notepad", "Edit Copy")

See Also:
SendKeysTo, SendKeysChild, SendKey, KeyToggleSet, SnapShot

ShellExecute
Runs a program via the Windows ShellExecute command
Syntax:

ShellExecute(program-name, params, directory, display mode, operation)
Parameters:

(s) program-name the name of the desired .EXE, .COM, .PIF, .BAT file or a data file.
(s) params optional parameters as required by the application.
(s) directory current working directory (if applicable).
(i) display mode @NORMAL, @ICON, @ZOOMED, @HIDDEN; or 0 for the default mode.
(i) operation operation to perform on the specified file.

Returns:
(i) @TRUE on success; @FALSE on failure.

This function uses the Windows ShellExecute API to launch the specified file.    The similar RunShell
function also uses the ShellExecute API in the 16-bit version, but uses the CreateProcess API in the 32-
bit version.    Note that RunShell has a "wait" parameter, while this function does not.

"operation" is the operation to perform on the file ("Open", "Print", etc.), which may or may not correspond
to an available "verb" on the context menu for the file.    This parameter may be case-sensitive.    Specify a
blank string "" for the file's default operation.

Note: If you use this function to launch a shortcut, and the shortcut points to an invalid path, Windows will
display a "Missing Shortcut" dialog box asking if you wish to update the shortcut.    This would not be
suitable to use in unattended operation.    Instead, you could use one of the Run.. functions to launch the
shortcut, which would return an error #1932 if the shortcut could not be launched, and this error could be
trapped using the ErrorMode function.
Example:
; launches a shortcut to a "Dial-Up Networking" item on the desktop
ShellExecute("d:\win95\desktop\netcom.lnk", "", "", @NORMAL, "")
WinWaitClose("Connect To")

See Also:
RunShell

ShortcutEdit {*95}
Modifies the specified shortcut file.
Syntax:

ShortcutEdit(link-name, target, params, start-dir, show-mode)
Parameters:

(s) link-name    the name of shortcut .LNK file to be created.
(s) target    file or directory name which "link-name" will point to.
(s) params    optional command-line parameters for "target"
(s) start-dir    "Start in" directory for "target".
(i) show-mode "Run" mode for "target": @NORMAL, @ZOOMED, or @ICON.

Returns:
(i)                                @TRUE if the shortcut was successfully modified;
                                      @FALSE if it wasn't.

See ShortcutMake for further information on these parameters.
Example:
DirChange("C:\Win95\Desktop")
ShortcutMake("system~1.LNK", "c:\Program Files\winbatch\system~1.wbt", "", "",
@NORMAL)
ShortcutEdit("system~1.LNK", "", "", "c:\Win95\desktop", @NORMAL)

See Also:
ShortCutExtra, ShortcutInfo, ShortcutMake

ShortcutExtra {*95}
Sets additional information for the specified shortcut file.
Syntax:

ShortcutExtra(link-name, description, hotkey, icon-file, icon-index)
Parameters:

(s) link-name    the name of shortcut .LNK file to be modified.
(s) description the internal description for the shortcut.
(s) hotkey    the "shortcut key" to be assigned to the shortcut.
(s) icon-file    a file containing an icon to be used for the shortcut, with optional path.
(i) icon-index    the 0-based index position of the desired icon within "icon-file".

Returns:
(i)                          @TRUE if the shortcut was successfully modified;
                                @FALSE if it wasn't.

The "description" parameter only sets an internal description, which is not actually displayed anywhere.

If "hotkey" is not a blank string (""), it specifies the hotkey ("shortcut key") for the shortcut.    This can be
an alphanumeric or special character (see SendKey for a list of special key characters), optionally
preceded by one or more of the following modifiers:

! (Alt)
^ (Control)
+ (Shift)

Note that this function can be used to set hotkeys which would be impossible to set from within the
shortcut properties dialog in Explorer.

"Icon-file" can be used to specify an .EXE (or .DLL) file or an .ICO file containing an icon which you want
to be used for the shortcut.    If "icon-file" specifies an .EXE (or .DLL) file (which can contain multiple
icons), then "icon-index" can be used to specify the offset of a particular icon within "icon-file", where 0
indicates the first icon in the file, 1 indicates the second icon, etc. If "icon-file" specifies an .ICO file, then
"icon-index" should be 0.

You can specify a blank string ("") for "icon-file", and 0 for "icon-index", to use the default icon.

Example:
DirChange("C:\Win95\Desktop")
ShortcutMake("system~1.LNK", "c:\Program Files\winbatch\system~1.wbt","", "c:\
Program Files\Winbatch", @NORMAL)
ShortcutExtra("system~1.LNK", "WinBatch Version Info", "^!j", "", 0)

See Also:
ShortcutEdit, ShortcutInfo, ShortcutMake

ShortcutInfo {*95}
Returns information on the specified shortcut file.
Syntax:
ShortcutInfo(link-name)
Parameters:

(s) link-name the name of shortcut .LNK file.
Returns:

(s) a TAB delimited list of information on the shortcut file.

ShortcutInfo returns a TAB-delimited list containing the following items (some of which may be blank):

target                file or directory name which the shortcut points to.
params command-line parameters for "target".
start-dir "Start in" directory for "target".
show-mode "Run" mode for "target": 1 (@ICON), 2 (@NORMAL), or 3 (@ZOOMED).
description the internal description for the shortcut.
hotkey the "shortcut key" for the shortcut.
icon-file the name of the icon file being used by the shortcut.
icon-index the 0-based index position within "icon-file" of the icon being used.

Example:
DirChange("C:\Win95\Desktop")
ShortcutMake("system~1.LNK", "c:\Program Files\winbatch\system~1.wbt", "", "",
@NORMAL)
ShortcutExtra("system~1.LNK", "WinBatch Version Info", "^!j", "", 0)
info=ShortcutInfo("system~1.LNK")

target= ItemExtract(1, info, @tab)
params= ItemExtract(2, info, @tab)
startdir= ItemExtract(3, info, @tab)
showmode= ItemExtract(4, info, @tab)
desc= ItemExtract(5, info, @tab)
hotkey= ItemExtract(6, info, @tab)
iconfile= ItemExtract(7, info, @tab)
iconindex= ItemExtract(8, info, @tab)

editinfo=StrCat("filename=",filename,@cr,"params=",params,@cr,"workdir=",workdir,@cr
,"showmode=",showmode)
extrainfo=StrCat("desc=",desc,@cr,"hotkey=",hotkey,@cr,"iconpath=",iconpath,@cr,"ico
nindex=",iconindex)
Message("ShortcutInfo Syntax", StrCat(editinfo,@cr, extrainfo))

See Also:
ShortcutEdit, ShortCutExtra, ShortcutMake

ShortcutMake {*95}
Creates a Windows 95 shortcut for the specified filename or directory.
Syntax:

ShortcutMake(link-name, target, params, start-dir, show-mode)
Parameters:

(s) link-name the name of shortcut .LNK file to be created.
(s) target file or directory name which "link-name" will point to.
(s) params optional command-line parameters for "target".
(s) start-dir "Start in" directory for "target".
(i) show-mode "Run" mode for "target": 1 (@ICON), 2 (@NORMAL), or 3 (@ZOOMED).

Returns:
(i)                          @TRUE if the shortcut was successfully created;
                                @FALSE if it wasn't.

This function can be used to create a shortcut file which points to a filename or to a directory.

"Params" and "start-dir" are optional, and can be set to blank strings ("").    "Show-mode" is optional, and
can be set to 0.

If "target" specifies a directory, the other parameters are meaningless.

Example:
DirChange("C:\Win95\Desktop")
ShortcutMake("system~1.LNK", "c:\Program Files\winbatch\system~1.wbt","", "c:\
Program Files\Winbatch", @NORMAL)

See Also:
ShortcutEdit, ShortCutExtra, ShortcutInfo,

Sin
Calculates the sine.
Syntax:

Sin(x)
Parameters:

(f) x angle in radians.
Returns:

(f) The Sin function returns the sine of x.

Calculates the sine.    If the passed parameter is large, a loss in significance in the result or significance
error may occur.
Note:    To convert an angle measured in degrees to radians, simply multiply by the constant @Deg2Rad.
Example:
real=AskLine("Sine", "Enter an angle between 0 and 360", "45")
answer=sin(real * @Deg2Rad)
Message("Sine of %real% degrees is", answer)

See Also:
Acos, Asin, Atan, Cos, Tan, Sinh

Sinh
Calculates the hyperbolic sine.
Syntax:

Sinh(x)
Parameters:

(f) x angle in radians.
Returns:

(f) the hyperbolic sine of x.

Calculates the hyperbolic sine.    If the passed parameter is large, a loss in significance in the result or
significance error may occur.

Note:    To convert an angle measured in degrees to radians, simply multiply by the constant @Deg2Rad.
Example:
real=AskLine("SinH", "Enter an angle between 0 and 360", "45")
answer=sinh(real * @Deg2Rad)
Message("Hyperbolic Sine of %real% degrees is", answer)

See Also:
Acos, Asin, Atan, Cos, Cosh, Sin, Tan, Tanh

SnapShot
Takes a bitmap snapshot of the screen and pastes it to the clipboard.
Syntax:

SnapShot (request#)
Parameters:

(i) request# see below.
Returns:

(i) always 0.

Req# Meaning

0 Take snapshot of entire screen
1 Take snapshot of client area of parent

window of active window
2 Take snapshot of entire area of parent

window of active window
3 Take snapshot of client area of active window
4 Take snapshot of entire area of active window

Example:
SnapShot(2)

See Also:
ClipPut

Sounds
Turns sounds on or off.
Syntax:

Sounds (request#)
Parameters:

(i) request# see below.
Returns:

(i) previous Sound setting.

If Windows multimedia sound extensions are present, this function turns sounds made by the WIL
Interpreter on or off.    Specify a request# of 0 to turn sounds off, and a request# of 1 to turn them on.

By default, the WIL Interpreter makes noise.    You can override this by entering:

Sounds=0

in the [Main] section of the WWWBATCH.INI file.
Example:
Sounds(0)

See Also:
Beep, PlayMedia, PlayMidi, PlayWaveForm

Sqrt
Calculates the square root.
Syntax:

Sqrt(x)
Parameters:

(f) x floating point number.
Returns:

(f) the square root result.

The Sqrt function calculates the square root of the passed parameter.    It the passed parameter is
negative, a domain error occurs.
Example:
real=AskLine("Square Root", "Enter a positive number", "269")
answer=sqrt(real)
Message("Square root of %real% is", answer)

See Also:
Operator    **    (the power operator)

StrCat
Concatenates two or more strings.
Syntax:

StrCat (string1, string2[, ..., stringN])
Parameters:

(s) string1, etc. at least two strings you want to concatenate.
Returns:

(s)                                      concatenation of the entire list of input strings.

Use this command to stick character strings together, or to format display messages.    Although the
substitution feature of the WIL (putting percent signs on both side of a variable name) is a little quicker
and easier than the strcat function, substitution should only be used for simple, short cases.    Use StrCat
when concatenating large strings.
Example:
user = AskLine("Login", "Your Name:", "")
msg = StrCat("Hi, ", user)
Message("Login", msg)

; note that this is the same as the second line above:
msg = "Hi, %user%"

See Also:
StrFill, StrFix, StrTrim

StrCharCount
Counts the number of characters in a string.
Syntax:

StrCharCount(string)
Parameters:

(s) string any text string.
Returns:

(i) the number of characters in a string,

Use this function to count the number of characters in a string.    This function is useful when dealing with
double-byte character sets such as those containing Kanji characters.    When using single byte character
sets, such as those found in English versions of Windows, this function is identical to the StrLen function.
Example:
name = AskLine("Data Entry", "Please enter your name")
len = StrLen(name)
chars = StrCharCount(name)
Message(name, "Is %len% bytes long and %@CRLF% has %chars% characters")

See Also:
StrLen, StrScan, StrReplace, StrFill

StrCmp
Compares two strings.
Syntax:

StrCmp (string1, string2)
Parameters:

(s) string1, string2 strings to compare.
Returns:

(i)                            -1, 0, or 1; depending on whether string1 is less than, equal to, or
greater than string2, respectively.

Use this command to determine whether two strings are equal, or which precedes the other in an ANSI
sorting sequence.

Note:    This command has been included for semantic completeness.    The relational operators >, >=,
==, !=, <=, and < provide the same capability.
Example:
a = AskLine("STRCMP", "Enter a test line", "")
b = AskLine("STRCMP", "Enter another test line", "")
c = StrCmp(a, b)
c = c + 1
d = StrSub("less than equal to greater than", (c * 12)+ 1, 12)
; Note that above string is grouped into 12-character
; chunks.
; Desired chunk is removed with the StrSub statement.
Message("STRCMP", "%a% is %d% %b%")

See Also:
StriCmp, StrIndex, StrLen, StrScan, StrSub

StrFill
Creates a string filled with a series of characters.
Syntax:

StrFill (filler, length)
Parameters:

(s) filler a string to be repeated to create the return string.    If the filler string is
null, spaces will be used instead.

(i) length the length of the desired string.
Returns:

(s) character string.

Use this function to create a string consisting of multiple copies of the filler string concatenated together.   
Example:
Message("My Stars", StrFill("*", 30))

which produces:

See Also:
StrCat, StrFix, StrLen, StrTrim

StrFix
Pads or truncates a string to a fixed length using bytes.
Syntax:

StrFix (base-string, pad-string, length)
Parameters:

(s) base-string string to be adjusted to a fixed length.
(s) pad-string appended to base-string if needed to fill out the desired length.    If

pad-string is null, spaces are used instead.
(i) length length of the desired string.

Returns:
(s)                      fixed size string.

This function "fixes" the length of a string, either by truncating it on the right, or by appending enough
copies of pad-string to achieve the desired length.
Example:
a = StrFix("Henry", " ", 15)
b = StrFix("Betty", " ", 15)
c = StrFix("George", " ", 15)
Message("Spaced Names", StrCat(a, b, c))

which produces:

See Also:
StrFill, StrLen, StrTrim

StrFixChars
Pads or Truncates a string to a fixed length using characters.
Syntax:

StrFixChars(base-string, pad-string, length)
Parameters:

(s) base-string string to be adjusted to a fixed length.
(s) pad-string appended to base-string if needed to fill out the desired length.    If

pad-string is null, spaces are used instead.
(i) length character count of the desired string.

Returns:
(s)                      fixed size string.

This function is similar to StrFix in that it "fixes" the length of a string, either by truncating it on the right, or
by appending enough copies of pad-string to achieve the desired length.    However, StrFixChars works
based on characters rather than bytes.    This function is useful when dealing with double-byte character
sets such as those containing Kanji characters.    When using single byte character sets, such as those
found in English versions of Windows, this function is identical to the StrFix function.
Example:
a = StrFixChars("Henry", " ", 15)
b = StrFixChars("Betty", " ", 15)
c = StrFixChars("George", " ", 15)
Message("Spaced Names", StrCat(a, b, c))

See Also:
StrFix, StrFill

StriCmp
Compares two strings without regard to case.
Syntax:

StriCmp (string1, string2)
Parameters:

(s) string1, string2 strings to compare.
Returns:

(i)                              -1, 0, or 1; depending on whether string1 is less than, equal to, or
greater than string2, respectively.

Use this command to determine whether two strings are equal, or which precedes the other in an ANSI
sorting sequence, when case is ignored.
Example:
a = AskLine("STRICMP", "Enter a test line", "")
b = AskLine("STRICMP", "Enter another test line", "")
c = StriCmp(a, b)
c = c + 1
d = StrSub("less than equal to greater than", (c * 12)+ 1, 12)
; Note that above string is grouped into 12-character
; chunks.
; Desired chunk is removed with the StrSub statement.
Message("STRICMP", "%a% is %d% %b%")

See Also:
StrCmp, StrIndex, StrLen, StrScan, StrSub

StrIndex
Searches a string for a sub-string.
Syntax:

StrIndex (string, sub-string, start, direction)
Parameters:

(s) string the string to be searched for a sub-string.
(s) sub-string the string to look for within the main string.
(i) start the position in the main string to begin search.    The first character of a

string is position 1.
(i) direction the search direction.    @FWDSCAN searches forward, while

@BACKSCAN searches backwards.
Returns:

(i) position of sub-string within string, or 0 if not found.

This function searches for a sub-string within a "target" string.    Starting at the "start" position, it goes
forward or backward depending on the value of the "direction" parameter.    It stops when it finds the "sub-
string" within the "target" string, and returns its position.

A start position of 0 has special meaning depending on which direction you are scanning.    For forward
searches, zero indicates the search should start at the beginning of the string.    For reverse searches,
zero causes it to start at the end of the string.
Example:
instr = AskLine("STRINDEX", "Type a sentence:", "")
start = 1
daend = StrIndex(instr, " ", start, @FWDSCAN)
If daend == 0

Message("Sorry...", "No spaces found")
else

a = StrCat("First word is: ", StrSub(instr, start, daend - 1))
Message("STRINDEX", a)

endif
See Also:

StrLen, StrScan, StrSub

StrLen
Provides the length of a string.
Syntax:

StrLen (string)
Parameters:

(s) string any text string.
Returns:

(i) length of string.

Use this command to determine the length of a string variable or expression.
Example:
myfile = AskLine("Filename", "File to process:", "")
namlen = StrLen(myfile)
If namlen > 13

Message("Error", "Filename too long!")
endif

See Also:
StrFill, StrFix, StrIndex, StrScan, StrTrim

StrLower
Converts a string to lowercase.
Syntax:

StrLower (string)
Parameters:

(s) string any text string.
Returns:

(s) lowercase string.

Use this command to convert a text string to lower case.
Example:
a = AskLine("STRLOWER", "Enter text", "")
b = StrLower(a)
Message(a, b)

See Also:
StriCmp, StrUpper

StrReplace
Replaces all occurrences of a sub-string with another.
Syntax:

StrReplace (string, old, new)
Parameters:

(s) string string in which to search.
(s) old target sub-string.
(s) new replacement sub-string.

Returns:
(s) updated string, with old replaced by new.

StrReplace scans the "string", searching for occurrences of "old" and replacing each occurrence with
"new".
Example:
; Copy all INI files to clipboard
a = FileItemize("*.ini")
crlf = StrCat(Num2Char(13), Num2Char(10))
b = StrReplace(a, " ", crlf)
ClipPut(b)

See Also:
StrIndex, StrScan, StrSub

StrScan
Searches string for occurrence of delimiters.
Syntax:

StrScan (string, delimiters, start, direction)
Parameters:

(s) string the string that is to be searched.
(s) delimiters a string of delimiters to search for within string.
(i) start the position in the main string to begin search.    The first character of a

string is position 1.
(i) direction the search direction.    @FWDSCAN searches forward, while

@BACKSCAN searches backwards.
Returns:

(i) position of delimiter in string, or 0 if not found.

This function searches for delimiters within a target "string".    Starting at the "start" position, it goes
forward or backward depending on the value of the "direction" parameter.    It stops when it finds any one
of the characters in the "delimiters" string within the target "string".
Example:
; Parse a string with multiple delimiters into standard param format
thestr = "123,456.789:abc"
length=StrLen(thestr)
start = 1
count=0
while @TRUE

finish = StrScan(thestr, ",.:", start, @FWDSCAN)
If finish == 0

break
else

count = count+1
param%count% = StrSub(thestr, start, finish - start)
start=finish+1
Message("Parameter number %count% is", param%count%)
If finish == length then Break

endif
endwhile
If start <= length

finish = length+1
count = count+1
param%count% = StrSub(thestr, start, finish - start)
Message("Parameter number %count% is", param%count%)

endif
param0 = count
Message("Parameter count is",param0)

See Also:
StrLen, StrSub

StrSub
Extracts a sub-string out of an existing string.
Syntax:

StrSub (string, start, length)
Parameters:

(s) string the string from which the sub-string is to be extracted.
(i) start character position within string where the sub-string starts.    (The first

character of the string is at position 1).
(i) length length of desired sub-string.    If you specify a length of zero it will return

a null string.    If you specify a length of -1 it will extract the rest of the
string.

Returns:
(s) sub-string of parameter string.

This function extracts a sub-string from within a "target" string.    Starting at the "start" position, it copies
up to "length" characters into the sub-string.
Example:
a = "My dog has fleas"
animal = StrSub(a, 4, 3)
Message("STRSUB", "My animal is a %animal%")

See Also:
StrLen, StrScan

StrTrim
Removes leading and trailing blanks from a character string.
Syntax:

StrTrim (string)
Parameters:

(s) string a string with unwanted spaces at the beginning and/or end.
Returns:

(s) string devoid of leading and trailing spaces.

This function removes spaces and tab characters from the beginning and end of a text string.
Example:
mydata = ""
while mydata != "exit"

mydata = AskLine("STRTRIM", "Type stuff ('exit' quits)", "")
mydata = StrTrim(mydata)
Display(4,"STRTRIM",">%mydata%<")

endwhile
exit

See Also:
StrFill, StrFix, StrLen

StrUpper
Converts a string to uppercase.
Syntax:

StrUpper (string)
Parameters:

(s) string any text string.
Returns:

(s) uppercase string.

Use this function to convert a text string to upper case.
Example:
a = AskLine("STRUPPER", "Enter text","")
b = StrUpper(a)
Message(a, b)

See Also:
StriCmp, StrLower

Switch
The Switch statement allows selection among multiple blocks of statements.
Syntax:

Switch expression
case expression

statements
break

case expression
statements
break

EndSwitch
Parameters:

(s) expression an expression that must evaluate to an integer.

The Switch statement allows selection among multiple blocks of statements, depending on the value of
an expression.    The expression must evaluate to an integer.

The Switch statement causes the statements in the switch body to be scanned by the parser as it
attempts to find a case statement.    When a case statement is found, the expression following the case
statement is evaluated, and if the expression evaluates to the same value as the expression following the
Switch statement, execution of the following statements is initiated.    The EndSwitch statement
terminates the Switch structure.

If a matching case expression was found, and execution was initiated, the following statements will affect
continued execution:

Break Terminates the Switch structure and transfers control to the statement following
the next matching EndSwitch.

Continue Stops execution and resumes scanning for a case statement.
Case Ignored.    Treated as a comment
EndSwitch Terminates the Switch structure and transfers control to the next statement.

Note:    Switch and Select may be used interchangeably. They are synonyms for the same statement.

EndSwitch, EndSelect, "End Switch", and "End Select" may be used interchangeably.
Example:
response=AskLine("Switch", "Enter a number between one and three", 1)
Switch response

case 1
Message("Switch", "Case 1 entered")
break

case 2
Message("Switch", "Case 2 entered")
break

case 3
Message("Switch", "Case 3 entered")
break

case response ; default case
Message("Switch", "Default case entered")
break

EndSwitch
See Also:

If, For, GoSub, While

Tan
Calculates the tangent.
Syntax:

Tan(x)
Parameters:

(f) x angle in radians.
Returns:

(f) the Tan function returns the tangent of x..

Calculates the tangent.    If x is large, a loss in significance in the result or significance error may occur.
Note:    To convert an angle measured in degrees to radians, simply multiply by the constant @Deg2Rad.
Example:
real=AskLine("Tangent", "Enter an angle between 0 and 360", "45")
answer=tan(real * @Deg2Rad)
Message("Tangent of %real% degrees is", answer)

See Also:
Acos, Asin, Atan, Cos, Sin, Tanh

Tanh
Calculates the hyperbolic tangent.
Syntax:

Tanh(x)
Parameters:

(f) x angle in radians.
Returns:

(f) the Tanh function returns the hyperbolic tangent of x.

Calculates the hyperbolic tangent.    There is no error value.

Note:    To convert an angle measured in degrees to radians, simply multiply by the constant @Deg2Rad.
Example:
real=AskLine("TanH", "Enter an angle between 0 and 360", "45")
(real * @Deg2Rad)
Message("Hyperbolic Tangent of %real% degrees is", answer)

See Also:
Acos, Asin, Atan, Cos, Cosh, Sin, Sinh, Tan

Terminate
Conditionally ends a WIL program.
Syntax:

Terminate (expression, title, message)
Parameters:

(s) expression any logical expression.
(s) title the title of a message box to be displayed before termination.
(s) message the message in the message box.

Returns:
(i)                    always 1.

This command ends processing for the WIL program if "expression" is nonzero.    Note that many
functions return @TRUE (1) or @FALSE (0), which you can use to decide whether to cancel a menu item.

If either "title" or "message" contains a string, a message box with a title and a message is displayed
before exiting.
Examples:
; unconditional termination w/o message box (same as Exit)
Terminate(@TRUE, "", "")

; basically a no-op:
Terminate(@FALSE, "", "This will never terminate")

; exits with message if variable is less than zero:
Terminate(a < 0, "Error", "Cannot use negative numbers")

; exits w/o message if answer isn't "YES":
Terminate(answer != "YES", "", "")

See Also:
Display, Exit, Message, Pause

TextBox
Displays a file in a list box on the screen and returns the selected line.

Note:    This function has been replaced by AskFileText, but will still work in this version for compatibility
reasons.      See AskFileText.
Syntax:

TextBox (title, filename)
Parameters:

(s) title list box title.
(s) filename file containing contents of list box.

Returns:
(s) highlighted string, if any.

This function loads a file into a Windows list box and displays the list box to the user.    TextBox has two
primary uses:    First, it can be used to display multi-line messages to the user.    In addition, because of its
ability to return a selected line, it may be used as a multiple choice question box.    The line highlighted by
the user (if any) will be returned to the program.    If the user does not make a selection, a null string ("")
is returned.

If disk drive and path are not part of the filename, the current directory will be examined first, and then the
DOS path will be searched to find the desired file.

TextBox is like TextBoxSort, except that with TextBoxSort the items in the displayed box are sorted and
with TextBox they are left unsorted.
Example:
; Display WIN.INI
a = TextBox("Choose a line", "c:\windows\win.ini")
Display(3, "Chosen line", a)

which produces (at least on my system):

and then:

See Also:
AskItemList

TextBoxSort
Displays a file in a sorted list box on the screen and returns the selected line.

Note:    This function has been replaced by AskFileText, but will still work in this version for compatibility
reasons.      See AskFileText.
Syntax:

TextBoxSort (title, filename)
Parameters:

(s) title list box title.
(s) filename file containing contents of list box.

Returns:
(s) highlighted string, if any.

This function loads a file into a Windows list box, which is sorted alphabetically and displayed to the user. 
The line highlighted by the user (if any) will be returned to the program.    If the user does not make a
selection, a null string ("") is returned.

If disk drive and path are not part of the filename, the current directory will be examined first, and then the
DOS path will be searched to find the desired file.

TextBoxSort is like TextBox, except that with TextBoxSort the items in the displayed box are sorted and
with TextBox they are left unsorted.
Example:
a = TextBoxSort("Select a phone number", "phones.txt")
Display(3, "Selected number is", a)

See Also:
AskItemList

TextSelect
Allows the user to choose an item from an unsorted list box.

Note:    This function has been replaced by AskItemList, but will still work in this version for compatibility
reasons.      See AskItemList.
Syntax:

TextSelect (title, list, delimiter)
Parameters:

(s) title the title of dialog box to display.
(s) list a string containing a list of items to choose from.
(s) delimiter a string containing the character to act as delimiter between items in the

list.
Returns:

(s) the selected item.

This function displays a dialog box with a list    box inside.    This list box is filled with an unsorted list of
items taken from a string you provide to the function.

Each item in the string must be separated (delimited) by a character, which you also pass to the function.

The user selects one of the items by either double-clicking on it, or single-clicking and pressing OK.    The
item is returned as a string.

If you create the list with the FileItemize or DirItemize functions you will be using a space-delimited list.   
WinItemize, however, creates a tab-delimited list of window titles since titles can have embedded blanks.

TextSelect is like ItemSelect, except that with TextSelect the displayed box is larger and the items in the
box are not sorted alphabetically.
Example:
DirChange(DirWindows(0))
inifiles = FileItemize("*.ini")
ini = TextSelect("Select an INI file to edit", inifiles, " ")
If ini == "" Then Exit
RunZoom("notepad.exe", ini)

See Also:
AskLine, Dialog, DirItemize, FileItemize, AskItemList, AskFileText, WinItemize

TimeFunctions
Most, but not all, time functions use the "datetime" format, which is actually just a special
form of a string or list.    It looks like

"YY:MM:DD:HH:MM:SS"

For example, December 25, 1993, at 3:50:23 PM would be

"93:12:25:15:50:23"

YYs in the range 50 to 99 are assumed to be in the range 1950 to 1999. YYs in the range 00
to 49 are assumed to be in the range of 2000 to 2049.

If you need to compare two times in this format, use the TimeDiffSecs or TimeDiffDays
function to compute the difference in the times and return a positive or negative result.

TimeAdd
Adds two YmdHms variables
Syntax:

TimeAdd(datetime, datetime difference)
Parameters:

(s) datetime a datetime using the format of YY:MM:DD:HH:MM:SS.
(s) datetime difference a datetime to be added to the original using the same format.

Returns:
(s) datetime a new datetime

Use this function to add a specified date/time to an original date/time.    TimeAdd uses normalized
conversion so a valid date/time will be returned.
Example:
Now=TimeYmdHms()
AddTime = "00:00:00:157:00:00" ; 157 hours
Later=TimeAdd(Now, AddTime)
Message("157 hours from now will be", Later)

See Also:
FileTimeGet, TimeDate, TimeYmdHms, TimeDiffSecs, TimeDelay, TimeWait, TimeSubtract

TimeDate
Provides the current date and time in a human-readable format.   
For computations with times and dates the TimeYmdHms function should be used instead.
Syntax:

TimeDate ()
Parameters:

none
Returns:

(s) the current date and time.

This function will return the current date and time in a pre-formatted string.    The format of the string
depends on the current settings in the [Intl] section of the WIN.INI file:

ddd mm/dd/yy hh:mm:ss XX
ddd dd/mm/yy hh:mm:ss XX
ddd yy/mm/dd hh:mm:ss XX

Where:

ddd is day of the week (e.g. Mon)
mm    is the month (e.g. 10)
dd    is the day of the month (e.g. 23)
yy    is the year (e.g. 90)
hh    is the hours
mm    is the minutes
ss    is the seconds
XX    is the Day/Night code (e.g. AM or PM)

Note1:    Windows provides even more formatting options than this.

The WIN.INI file will be examined to determine which format to use.    You can adjust the WIN.INI file via
the [Intl] section of Control Panel if the format isn't what you prefer.

Note2:    This function is the same as the DateTime function, which it replaces.
Example:
a=Timedate()
Message("Current date and time", a)

would produce:

See Also:
FileTimeGet, TimeAdd, TimeYmdHms, TimeDiffSecs, TimeDelay, TimeWait

TimeDelay
Pauses execution for a specified amount of time.
Syntax:

TimeDelay(seconds)
Parameters:

(i) seconds integer seconds to delay (1 - 3600).
Returns:

(i) always 1.

This function causes the currently-executing WIL program to be suspended for the specified period of
time.    Seconds must be an integer between 1 and 3600.    Smaller or larger numbers will be adjusted
accordingly.
Example:
Message("Wait", "About 15 seconds")
TimeDelay(15)
Message("Hi", "I'm Baaaaaaack")

See Also:
TimeWait, Yield

TimeDiffDays
Returns the difference in days between the two dates.
Syntax:

TimeDiffDays (datetime1, datetime2)
Parameters:

(s) datetime1 uses format YY:MM:DD.
(s) datetime2 uses format YY:MM:DD.

Returns:
(i) integer the difference in days between the two dates.

Use this function to return the difference in days between two dates.    Hours, mins, secs, if specified,    are
ignored.
Example:
;Shopping days til Christmas
Now=TimeYmdHms() ; Get current time
Year=ItemExtract(1, Now, ":")
Xmas=strcat(Year, ":12:25:00:00:00")
Shopping=TimeDiffDays(Xmas, Now)
if Shopping>0
 Message("Shopping Days to Christmas", Shopping)
else
 if Shopping<0
 Message("You missed it by", abs(Shopping))
 else
 Message("Merry Christmas", "And a Happy New year")
 endif
endif

See Also:
FileTimeGet, TimeDate, TimeAdd, TimeYmdHms, TimeDiffSecs, TimeDelay, TimeWait

TimeDiffSecs
Returns time difference in seconds between the two datetimes.
Syntax:

TimeDiffSecs(datetime1, datetime2)
Parameters:

(s) datetime1 use format YY:MM:DD:HH:MM:SS.
(s) datetime2 use format YY:MM:DD:HH:MM:SS.

Returns:
(i) integer the difference in seconds between the two times.

Use this function to return the time difference between two datetimes.    The time difference should not
exceed 68 years or else an error will occur.
Example:
Now=TimeYmdHms()
Midnight=strcat(strsub(Now,1,9), "00:00:00")
Seconds=TimeDiffSecs(Now, Midnight)
Message("Seconds since midnight", Seconds)

See Also:
FileTimeGet, TimeDate, TimeAdd, TimeDiffDays, TimeYmdHms, TimeDelay, TimeWait

TimeJulianDay
Returns the Julian day given a datetime.
Syntax:

TimeJulianDay(datetime)
Parameters:

(s) datetime use format YY:MM:DD.
Returns:

(i) the Julian day.

Use this function to return the Julian date given a datetime.    The Julian date is often used in banking and
similar calculations as it provides an easy way to compute the difference between two dates.
Example:
a=TimeYmdHms()
b=TimeJulianDay(a)
Message("Todays Julian date is", b)

See Also:
FileTimeGet, TimeDate, TimeAdd, TimeDiffDays, TimeYmdHms, TimeDelay, TimeWait,
TimeJulToYmd

TimeJulToYmd
Returns the Julian day given a datetime.
Syntax:

TimeJulToYmd(julian-date)
Parameters:

(i) julian-date a Julian date.
Returns:

(s) the datetime corresponding to the specified Julian date.

This function converts the specified (numeric) Julian date value to a datetime in YmdHms format.    The
"Hms" portion of the returned YmdHms string will always be "00:00:00".
Example:
today = TimeYmdHms()
jul_today = TimeJulianDay(today)
jul_lastweek = jul_today - 7
lastweek = TimeJulToYmd(jul_lastweek)
FileTimeSet("myfile.log", lastweek)

See Also:
TimeJulianDay

TimeSubtract
Subtracts one YmdHms variable from another.
Syntax:

TimeSubtract(datetime, datetime difference)
Parameters:

(s) datetime a datetime using the format of YY:MM:DD:HH:MM:SS.
(s) datetime difference a datetime to be subtracted from the original using the

same format
Returns:

(s)

Use this function to subtract a specified date/time from an original date/time.    TimeSubtract uses
normalized conversion so a valid date/time will be returned.    "datetime difference" can not be larger than
"datetime".
Example:
time_now = TimeYmdHms()
time_yesterday = TimeSubtract(time_now, "00:00:01:00:00:00")
FileTimeSet("myfile.log", time_yesterday)

See Also:
TimeAdd

TimeWait
Pauses execution and waits for the date/time to pass.
Syntax:

TimeWait (datetime)
Parameters:

(s) datetime use format YY:MM:DD:HH:MM:SS.
Returns:

(i) always 1.

Use this function to pause execution to wait for the datetime to pass.    To wait for the next occurrence of
the specified time, (i.e., today or tomorrow), specify "00:00:00" for the date.

Example:
a=TimeYmdHms() ; Gets Current Time
b=TimeAdd(a,"00:00:00:00:00:07") ; Adds 7 seconds to current time
TimeWait(b) ; Waits for that time to occur
Display(3, "Time now should be", b)

See Also:
FileTimeGet, TimeDate, TimeAdd, TimeDiffDays, TimeDiffSecs, TimeYmdHms, TimeDelay

TimeYmdHms
Returns current date/time in the datetime format.
Syntax:

TimeYmdHms ()
Parameters:

none
Returns:

(s)datetime uses format YY:MM:DD:HH:MM:SS.

Use this function to return the current date and time in the datetime format.
Example:
a=TimeYmdHms()
Message("Time is", a)

See Also:
FileTimeGet, TimeDate, TimeAdd, TimeDiffSecs, TimeDelay, TimeWait

Version
Returns the version number of the parent program currently running.
Syntax:

Version ()
Parameters:

(none)
Returns:

(s) parent program version number.

Use this function to determine the version of the parent program that is currently running.
Example:
ver = Version()
Message("Version number", ver)

See Also:
DOSVersion, Environment, VersionDLL WinVersion

VersionDLL
Returns the version number of the WIL Interpreter currently running.
Syntax:

VersionDLL()
Parameters:

(none)
Returns:

(s) WIL Interpreter version number.

Use this function to determine the version of the WIL Interpreter that is currently running.    It is useful to
verify that a WIL program generated with the latest version of the language will operate properly on what
may be a different machine with a different version of the WIL Interpreter installed.
Example:
ver = VersionDLL()
If ver < "2.0a"

Message("Sorry", "WIL version 2.0a or higher required")
Exit

endif
AddExtender("extender.dll")

See Also:
DOSVersion, Environment, Version, WinVersion

WaitForKey
Waits for a specific key to be pressed.
Syntax:

WaitForKey (key1, key2, key3, key4, key5)
Parameters:

(s) key1 - key5 five keystrokes to wait for.
Returns:

(i) position of the selected keystroke (1-5).

WaitForKey requires five parameters, each of which represents a keystroke (refer to the SendKey
function for a list of special keycodes which can be used).    The WIL program will be suspended until one
of the specified keys are pressed, at which time the WaitForKey function will return a number from 1 to 5,
indicating the position of the "key" that was selected, and the program will continue.    You can specify a
null string ("") for one or more of the "key" parameters if you don't need to use all five.

WaitForKey will detect its keystrokes in most, but not all, Windows applications.    Any keystroke that is
pressed is also passed on to the underlying application.

Note:    Certain keys, such as {ALT} and {F10} may not work with this function and should be avoided.
Example:
k = WaitForKey("{F11}", "{F12}", "{INSERT}", "", "")
switch k

case 1
Message("WaitForKey", "You pressed the F11 key")
break

case 2
Message("WaitForKey", "You pressed the F12 key")
break

case 3
Message("WaitForKey", "You pressed the Insert key")
Break

endswitch

See Also:
IgnoreInput, IsKeyDown

WallPaper
Changes the Windows wallpaper.
Syntax:

WallPaper (bmp-name, tile)

Parameters:
(s) bmp-name Name of the BMP wallpaper file.
(i) tile @TRUE if wallpaper should be tiled;

@FALSE if wallpaper should not be tiled.
Returns:

(i) always 0.

This function immediately changes the Windows wallpaper.    It can even be used for wallpaper "slide
shows".
Example:
DirChange("c:\windows")
a = FileItemize("*.bmp")
a = AskItemList("Select New paper", a, " ", @unsorted, @single)
tile = @FALSE
If FileSize(a) < 40000 Then tile = @TRUE
Wallpaper(a, tile)

See Also:
WinParmSet

While
Conditionally and/or repeatedly executes a series of statements.
Syntax:

While    termination-condition
          series
          of
          statements
EndWhile

Parameters:
(s) termination-condition an expression to be evaluated.
(s) series of statements statements to be executed repeatedly until the condition

following the While keyword evaluates to @FALSE.

The While statement causes a series of statements to be repeatedly executed until the termination
condition evaluates to zero or @FALSE.    The test of the termination condition takes place before each
execution of the loop.    A While loop executes zero or more times, depending on the termination
condition.
The following statements affect continued execution:

Break Terminates the While structure and transfers control to the statement following the
next matching EndWhile.

Continue Returns to the While statement and re-evaluates the expression.
EndWhile Returns to the While statement and re-evaluates the expression.

Note: EndWhile and "End While" may be used interchangeably.
Example:
a=10
while a>5

Display(3, "The value of a is now", a)
a=a-1

endwhile
Message("The value of a should now be 5",a)

See Also:
If, For, GoSub, Switch, Select

WinActivate
Activates a previously running parent window.
Syntax:

WinActivate (partial-winname)
Parameters:

(s) partial-winname either an initial portion of, or an entire window
name.    The most-recently used window whose title matches the
name will be activated.

Returns:
(i)  @TRUE if a window was found to activate;
  @FALSE if no windows were found.

Use this function to activate windows for user input.
This function works only with top-level (parent) application windows.
Example:
Run("notepad.exe", "")
Run("clock.exe", "")
WinActivate("Notepad")

See Also:
WinActivChild, WinCloseNot, WinGetActive, WinName, WinShow

WinActivChild
Activates a previously running child window.
Syntax:

WinActivChild(main windowname, child windowname)
Parameters:

(s) main windowname the initial part of, or an entire parent window name.
(s) child windowname the initial part of, or an entire child window name.

Returns:
(i) @TRUE if the window was found to activate;

@FALSE if no windows were found.

Use this function to activate a child window for user input.    The most recently used window whose title
matches the name will be activated.

Note: The partial window name you give must match the initial portion of the window name (as it appears
in the title bar) exactly, including proper case (upper or lower) and punctuation.    The parent window must
exist or this function will return an error.
Example:
WinActivChild("Program Manager", "Main")

See Also:
WinActivate, WinGetActive, WinCloseNot, WinShow

WinArrange
Arranges, tiles, and/or stacks application windows.
Syntax:

WinArrange (style)
Parameters:

(i) style one of the following: @STACK, @TILE (or @ARRANGE), @ROWS, or
@COLUMNS.

Returns:
(i) always 1.

Use this function to rearrange the open windows on the screen.    (Any iconized programs are unaffected.)
If there are more than four open windows and you specify @ROWS, or if there are more than three open
windows and you specify @COLUMNS, @TILE will be used instead.
This function works only with top-level (parent) application windows.
Example:
; Reveal all windows
WinArrange(@TILE)

See Also:
IconArrange, WinHide, WinIconize, WinItemize, WinPlace, WinShow, WinZoom

WinClose
Closes an open window.
Syntax:

WinClose (partial-winname)
Parameters:

(s) partial-winname either an initial portion of, or an entire window name.    The most-
recently used
window whose title matches the name will be closed.

Returns:
(i)                                      @TRUE if a window was found to close;
  @FALSE if no windows were found.

Use this function to close windows.
WinClose will not close the window which contains the currently executing WIL program.    You can,
however, use EndSession to end the current Windows session.
This function works only with top-level (parent) application windows.
Example:
Run("notepad.exe", "")
WinClose("Notepad")

See Also:
EndSession, WinCloseNot, WinHide, WinIconize, WinItemize, WinWaitClose

WinCloseNot
Closes all windows, except those provided as parameters.
Syntax:

WinCloseNot (partial-winname [, partial-winname...])
Parameters:

(s) partial-winname either an initial portion of, or an entire window name.    Any windows
whose titles
match the partial names will stay open.

Returns:
(i)                  always 1.

Use this function to close all windows except those specifically listed in the parameter strings.
At least one partial window name must be given.    A null-string parameter would match all windows, or, in
other words, close nothing.
This function works only with top-level (parent) application windows.
Example:
; The statement below will close all windows except:
; 1) Program Manager (starts with 'Program')
; 2) Clock (starts with 'Clo')
WinCloseNot("Program", "Clo")

See Also:
EndSession, WinClose, WinHide, WinIconize, WinItemize, WinWaitClose

WinExeName
Returns the name of the executable file which created a specified window.
Syntax:

WinExeName (partial-winname)
Parameters:

(s) partial-winname the initial part of, or an entire, window name.
Returns:

(s)  name of the EXE file.

Returns the name of the EXE file which created the first window found whose title matches "partial-
winname".
"Partial-winname" is the initial part of a window name, and may be a complete window name.    It is case-
sensitive.    You should specify enough characters so that "partial-winname" matches only one existing
window.
A partial-winname of "" (null string) specifies the window making the current call to the WIL Interpreter.
This function works only with top-level (parent) application windows.
Example:
prog = WinExeName("Notepad")
WinClose("Notepad")
Delay(5)
Run(prog, "")

See Also:
AppExist, AppWaitClose, Run, WinExist, WinGetActive, WinName

WinExist
Tells if specified window exists.
Syntax:

WinExist (partial-winname)
Parameters:

(s) partial-winnamethe initial part of, or an entire, window name.
Returns:

(i) @TRUE if a matching window is found;
@FALSE if a matching window is not found.

Note: The partial window name you give must match the initial portion of the window name (as appears in
the title bar) exactly, including proper case (upper or lower) and punctuation.
This function works only with top-level (parent) application windows.
Example:
if WinExist("Clock") == @FALSE Then RunIcon("Clock", "")

See Also:
AppExist, WinActivate, WinClose, WinExeName, WinExistChild, WinGetActive, WinItemize,
WinState

WinExistChild
Tells if specified child window exists.
Syntax:

WinExistChild ("partial-parent-windowname", "partial-child-windowname")
Parameters:

(s) partial-parent- windowname    the initial part of, or an entire parent window
name.

(s) partial-child-windowname the initial part or, or an entire child window name.
Returns:
(i) @TRUE if a matching window is found;

@FALSE if a matching window is not found.

Use this function to test for the existence of a child window.

Note: The partial window names you give must match the initial portion of the window name exactly, as it
appears in the title bar, including proper case (upper or lower) and punctuation.    The parent window must
exist or this function will return an error.
Example:
ans=WinExistChild("Program Manager", "Main")
if ans==@TRUE then Message("Main Group", "exists in Program Manager")

else Message("Main Group", "seems to have been deleted")
See Also:

AppExist, WinActivate, WinClose, WinExeName, WinGetActive, WinItemize, WinItemChild,
WinState

WinGetActive
Gets the title of the active window.
Syntax:

WinGetActive ()
Parameters:

(none)
Returns:

(s) title of active window.

Use this function to determine which window is currently active.
Example:
currentwin = WinGetActive()

See Also:
WinActivate, WinExeName, WinItemize, WinName, WinPlaceGet, WinPosition, WinTitle

WinHelp
Calls a Windows help file.
Syntax:

WinHelp (help-file, function, keyword)
Parameters:

(s) help-file name of the Windows help file, with an optional full path.
(s) function function to perform (see below).
(s) keyword keyword to look up in the help file (if applicable), or "".

Returns:
(i) @TRUE if successful;

@FALSE if unsuccessful.

This command can be used to perform several functions from a Windows help (.HLP) file.    It requires that
the Windows help program WINHELP.EXE be accessible.    The desired function is indicated by the
"function" parameter (which is not case-sensitive).    The possible choices for "function" are:

"Contents" Brings up the Contents page for the help file.

"Key" Brings up help for the keyword specified by the
"keyword" parameter.    You must specify a complete keyword, and it must
be spelled correctly.    If there is more than one occurrence of "keyword" in
the help file, a search box will be displayed which allow you to select the
desired topic from the available choices.

"PartialKey" Brings up help for the keyword specified by the "keyword" parameter.    You
may specify a partial keyword name: if it matches more than one keyword
in the help file, a search box will be displayed which allow you to select the
desired one from the available choices.    You may also specify a null string
("") for "keyword", in which case you will get a search dialog containing all
keywords in the help file.

"Command" Executes the help macro specified by the "keyword" parameter.

"Quit" Closes the WINHELP.EXE window, unless another application is still using it.

"HelpOnHelp" Brings up the help file for the Windows help program (WINHELP.HLP).

For the functions which do not require a keyword (i.e., "Contents", "Quit", and "HelpOnHelp"), specify a
null string ("") for the "keyword" parameter.
Example:
WinHelp("wil.hlp", "Key", "AskItemList")

WinHide
Hides a window.
Syntax:

WinHide (partial-winname)
Parameters:

(s) partial-winname either an initial portion of, or an entire window name.    The most-
recently used
window whose title matches the name will be hidden.

Returns:
(i) @TRUE if a window was found to hide;

@FALSE if no windows were found.

Use this function to hide windows.    The programs are still running when they are hidden.
A partial-window name of "" (null string) hides the window making the current call to the WIL Interpreter.
This function works only with top-level (parent) application windows.
Example:
Run("notepad.exe", "")
WinHide("Notepad")
Delay(3)
WinShow("Notepad")

See Also:
RunHide, WinClose, WinIconize, WinPlace

WinIconize
Iconizes a window.
Syntax:

WinIconize (partial-winname)
Parameters:

(s) partial-winname either an initial portion of, or an entire window name.    The most-
recently used
window whose title matches the name will be iconized.

Returns:
(i) @TRUE if a window was found to iconize;

@FALSE if no windows were found.

Use this function to turn a window into an icon at the bottom of the screen.
A partial-window name of "" (null string) iconizes the current WIL Interpreter window.
This function works only with top-level (parent) application windows.
Example:
Run("clock.exe", "")
WinIconize("Clo") ; partial window name used here

See Also:
IconArrange, RunIcon, WinClose, WinHide, WinPlace, WinShow, WinZoom

WinIdGet
Returns a unique "Window ID" (pseudo-handle) for the specified window name.
Syntax:

WinIdGet(partial-winname)
Parameters:

(s) partial-winnamethe initial part of, or an entire, window name.
Returns:

(s)                        the unique "Window ID".

Use this function to obtain the unique "Window ID" (pseudo-handle) for the specified parent window
name.    All functions which accept a partial window name as a parameter now accept the Window ID
obtained with    WinIdGet.    This can be useful to distinguish between multiple windows with the same
name, or to track a window whose title changes.
Example:
Run("notepad.exe", "")
winid1 = WinIdGet("~Notepad") ; gets the most-recently-accessed Notepad
Run("notepad.exe", "")
winid2 = WinIdGet("~Notepad") ; gets the most-recently-accessed Notepad
WinPlace(0, 0, 500, @ABOVEICONS, winid1)
WinPlace(500, 0, 1000, @ABOVEICONS, winid2)
WinActivate(winid1)

See Also:
DllHwnd, WinExist, WinGetActive, WinItemNameId, WinTitle

WinIsDOS
Tells whether or not a particular window is a DOS or console-type window.
Syntax:

WinIsDOS("partial-winname")
Parameters:

(s) partial-winname the initial part of, or an entire, window name.
Returns:

(i) @TRUE if the window is a DOS window.
@FALSE if it is not a DOS window.

Use this function to determine if the application is in DOS or Windows.

Note: "Partial-winname" is the initial part of a window name, and may be a complete window name.    It is
case-sensitive.    You should specify enough characters so that "partial-winname" matches only one
existing window.    If it matches more than one window, the most recently accessed window which it
matches will be used.
Example:
Run("command.com", "")
delay(5)
a=WinIsDOS("COMMAND")
if a==@true then message(a, "is a DOS window")

See Also:
WinExeName, WinExist, WinGetActive, WinItemize, WinName, WinState, WinTitle

WinItemChild
Returns a list of all the child windows under this parent.
Syntax:

WinItemChild("partial-parent-windowname")
Parameters:

(s) partial-parent-windowname the initial part of, or an entire, window name.
Returns:
(s)                        a list of all the child windows under the parent.

Use this function to return a tab-delimited list of all child windows existing under a given parent window.
Note: "Partial-parent-windowname" is the initial part of a window name, and may be a complete window
name.    It is case-sensitive.    You should specify enough characters so that "partial-parent-windowname"
matches only one existing window.    If it matches more than one window, the most recently accessed
window which it matches will be used.
Example:
grplist=WinItemChild("Program Man")
AskItemList("Progman Groups", grplist, @TAB, @SORTED, @SINGLE)

See Also:
AppExist, WinActivate, WinClose, WinExeName, WinGetActive, WinItemize, WinState

WinItemize
Returns a tab-delimited list of all open windows.
Syntax:

WinItemize ()
Parameters:

(none)
Returns:

(s) list of the titles of all open windows.

This function compiles a list of all the open application windows' titles and separates the titles by tabs.   
This is especially useful in conjunction with the AskItemList function, which enables the user to choose
an item from such a tab-delimited list.

Note this behaves somewhat differently than FileItemize and DirItemize, which create space-delimited
lists.    This is because window titles regularly contain embedded spaces.

This function works only with top-level (parent) application windows.    See WinItemChild to work with
child windows.
Example:
; Find a window
allwins = WinItemize()
htab = Num2Char(9)
mywind = AskItemList("Windows", allwins, htab, @unsorted, @single)
WinActivate(mywind)

See Also:
DirItemize, FileItemize, AskItemList, WinClose, WinCloseNot, WinGetActive, WinItemNameId,
WinName, WinPlaceGet, WinPosition

WinItemNameId
Returns a list of all open windows and their Window ID's.
Syntax:

WinItemNameId()
Parameters:

(none)
Returns:

(s) list of the titles and Window ID's of all open windows.

This function returns a list of top-level window titles and their corresponding "Window ID's", in the form:
"window1-name|window1-ID|window2-name|window2-ID|..."

Example:
winlist = WinItemNameId()
TextSelect("Windows and ID's", winlist, "|")

See Also:
WinIdGet, WinItemize

WinMetrics
Returns Windows system information.
Syntax:

WinMetrics (request#)
Parameters:

(i) request# see below.
Returns:

(i) see below.

The request# parameter determines what piece of information will be returned.

Req# Return value
-4 Windows Platform    0 = Other    1 = Windows    2 = Windows for Workgroups   

3 = Win32s    4 = Windows NT    5 = Windows 95
-3 WIL EXE type 0=Win16, 1=Intel32, 2=Alpha32, 3=Mips32
-2 WIL platform 1=Win16, 2=Win32
-1 Number of colors supported by video driver
0 Width of screen, in pixels
1 Height of screen, in pixels
2 Width of arrow on vertical scrollbar
3 Height of arrow on horizontal scrollbar
4 Height of window title bar
5 Width of window border lines
6 Height of window border lines
7 Width of dialog box frame
8 Height of dialog box frame
9 Height of thumb box on scrollbar
10 Width of thumb box on scrollbar
11 Width of an icon
12 Height of an icon
13 Width of a cursor
14 Height of a cursor
15 Height of a one line menu bar
16 Width of full screen window
17 Height of a full screen window
18 Height of Kanji window (Japanese)
19 Is a mouse present (0 = No, 1 = Yes)
20 Height of arrow on vertical scrollbar
21 Width of arrow on horizontal scrollbar
22 Is debug version of Windows running (0 = No, 1 = Yes)
23 Are Left and Right mouse buttons swapped (0 = No, 1 = Yes)
24 Reserved
25 Reserved
26 Reserved
27 Reserved
28 Minimum width of a window
29 Minimum height of a window
30 Width of bitmaps in title bar
31 Height of bitmaps in title bar
32 Width of sizeable window frame

33 Height of sizeable window frame
34 Minimum tracking width of a window
35 Minimum tracking height of a window

Additional request #'s for WinMetrics (32-bit version only):

41 TRUE or non-zero if the Microsoft Windows for Pen computing extensions are
installed; zero, or FALSE, otherwise.

42 TRUE or non-zero if the double-byte character set (DBCS) version of USER.EXE is
installed; FALSE, or zero otherwise.

43 Number of buttons on mouse, or zero if no mouse is installed.
44 (Win95 only) TRUE if security is present, FALSE otherwise.
63 (Win95 only) The least significant bit is set if a network is present; otherwise, it is

cleared.    The other bits are reserved for future use.
67 (Win95 only) Value that specifies how the system was started:

0 - Normal boot
1 - Fail-safe boot
2 - Fail-safe with network boot

Fail-safe boot (also called SafeBoot) bypasses the user's startup files.
70 TRUE or non-zero if the user requires an application to present information

visually in situations where it would otherwise present the information only in
audible form; FALSE, or zero, otherwise.

73 (Win95 only) TRUE if the computer has a low-end (slow) processor.
74 (Win95 only) TRUE if the system is enabled for Hebrew/Arabic languages.

There are a number of other request #'s which can be specified, but are of limited usefulness and
therefore not documented here.    Details on these can be obtained from Win32 programming references,
available from Microsoft (and others).
Example:
mouse = "NO"
If WinMetrics(19) == 1 Then mouse = "YES"
Message("Is there a mouse installed?", mouse)

See Also:
Environment, MouseInfo, NetInfo, WinParmGet, WinResources

WinName
Returns the name of the window calling the WIL Interpreter.
Syntax:

WinName ()
Parameters:

(none)
Returns:

(s) window name.

Returns the name of the window making the current call to the WIL Interpreter.
Example:
allwins = WinItemize()
win = AskItemList("Close window", allwins, @tab, @sorted, @single)
If win == WinName()

Message("Sorry", "I can't close myself")
else

WinClose(win)
endif
Exit

See Also:
WinActivate, WinExeName, WinGetActive, WinItemize, WinTitle

WinParmGet
Returns system information.
Syntax:

WinParmGet (request#)
Parameters:

(i) request# see below.
Returns:

(s) see below.

Note: This function requires Windows 3.1 or higher.

The request# parameter determines what piece of information will be returned.

Req#      Meaning Return value
1 Beeping 0 = Off, 1 = On
2 Mouse sensitivity "threshold1 threshold2 speed"
3 Border Width Width in pixels
4 Keyboard Speed Keyboard Repeat rate
5 LangDriver name of LANGUAGE.DLL
6 Horiz. Icon Spacing Spacing in pixels
7 Screen Save Timeout Timeout in seconds
8 Is screen saver enabled 0 = No, 1 = Yes
9 Desktop Grid size Grid Size
10 Wallpaper BMP file BMP file name
11 Desktop Pattern Pattern codes (string of 8 space-delimited nums.)
12 Keyboard Delay Delay in milliseconds
13 Vertical Icon Spacing Spacing in pixels
14 IconTitleWrap 0 = No, 1 = Yes
15 MenuDropAlign 0 = Right, 1 = Left
16 DoubleClickWidth Allowable horiz. movement in pixels for DblClick
17 DoubleClickHeight Allowable vert. movement in pixels for DblClick
18 DoubleClickSpeed Max time in millisecs between clicks for DblClick
19 MouseButtonSwap 0 = Not swapped, 1 = swapped
20 Fast Task Switch 0 = Off, 1 = On

Example:
If WinParmGet(8) == 1 Then Message("", "Screen saver is active")

See Also:
Environment, MouseInfo, NetInfo, WinMetrics, WinParmSet, WinResources

WinParmSet
Sets system information.
Syntax:

WinParmSet (request#, new-value, ini-control)
Parameters:

(i) request# see WinParmGet
(s) new-value see WinParmGet
(i) ini-control see below.

Returns:
(i) previous value of the setting.

Note: This function requires Windows 3.1 or higher.

See WinParmGet for a list of valid request #'s and values.

The "ini-control" parameter determines to what extent the value gets updated:

0 Set system value in memory only for future reference
1 Write new value to appropriate INI file
2 Broadcast message to all applications informing them
of new value
3 Both 1 and 2

Example:
WinParmSet(9, "2", 3) ; sets desktop grid size to 2

See Also:
WallPaper, WinParmGet

WinPlace
Places a window anywhere on the screen.
Syntax:

WinPlace (x-ulc, y-ulc, x-brc, y-brc, partial-winname)
Parameters:

(i) x-ulc how far from the left of the screen to place the upper-left corner (0-
1000).

(i) y-ulc how far from the top of the screen to place the upper-left corner (0-
1000).

(i) x-brc how far from the left of the screen to place the bottom-right corner
(10-1000) or @NORESIZE.

(i) y-brc how far from the top of the screen to place the bottom-right corner
(10-1000) or @NORESIZE or @ABOVEICONS.

(s) partial-winname either an initial portion of, or an entire windowname.    The most-
recently used
window whose title matches the name will be moved to the new
position.

Returns:
(i) @TRUE if a window was found to move;

@FALSE if no windows were found.

Use this function to move windows on the screen.    (You cannot, however, move icons or windows that
have been maximized to full screen).

The "x-ulc", "y-ulc", "x-brc", and "y-brc" parameters are based on a logical screen that is 1000 points wide
by 1000 points high.

You can move the window without changing the width and/or height by specifying @NORESIZE for the "x-
brc" and/or "y-brc" parameters, respectively.

You can fix the bottom of the window to sit just above the line of icons along the bottom of the screen by
specifying a "y-brc" of @ABOVEICONS.

Some sample parameters:

Upper left quarter of the screen:    0, 0, 500, 500
Upper right quarter:    500, 0, 1000, 500
Center quarter:    250, 250, 750, 750
Lower left eighth:    0, 750, 500, 1000

This function works only with top-level (parent) application windows.
Example:
WinPlace(0, 0, 200, 200, "Clock")

See Also:
WinArrange, WinHide, WinIconize, WinPlaceSet, WinPosition, WinShow, WinZoom

WinPlaceGet
Returns window coordinates.
Syntax:

WinPlaceGet (win-type, partial-winname)
Parameters:

(i) win-type @ICON, @NORMAL, or @ZOOMED
(s) partial-winnamethe initial part of, or an entire, window name.

Returns:
(s)                                    window coordinates (see below).

This function returns the coordinates for an iconized, normal, or zoomed window.

"Partial-winname" is the initial part of a window name, and may be a complete window name.    It is case-
sensitive.    You should specify enough characters so that "partial-winname" matches only one existing
window.    If it matches more than one window, the most recently accessed window which it matches will
be used.

The returned value is a string of either 2 or 4 numbers, as follows:

Iconic windows "x y" (upper left corner of the icon)
Normal windows "upper-x upper-y lower-x lower-y"
Zoomed windows "x y" (upper left corner of the window)

All coordinates are relative to a virtual 1000x1000 screen.

This function works only with top-level (parent) application windows.
Examples:
Run("clock.exe", "")
pos = WinPlaceGet(@NORMAL, "Clock")
Delay(2)
WinPlaceSet(@NORMAL, "Clock", "250 250 750 750")
Delay(2)
WinPlaceSet(@NORMAL, "Clock", pos)

See Also:
WinGetActive, WinItemize, WinPlaceSet, WinPosition, WinState

WinPlaceSet
Sets window coordinates.
Syntax:

WinPlaceSet (win-type, partial-winname, position-string)
Parameters:

(i) win-type    @ICON, @NORMAL, or @ZOOMED
(s) partial-winnamethe initial part of, or an entire, window name.
(s) position-string window coordinates (see below).

Returns:
(s)  previous coordinates.

This function sets the coordinates for an iconized, normal, or zoomed window.    The window does not
have to be in the desired state to set the coordinates; for example, you can set the iconized position for a
normal window so that when the window is subsequently iconized, it will go to the coordinates that you've
set.

"Partial-winname" is the initial part of a window name, and may be a complete window name.    It is case-
sensitive.    You should specify enough characters so that "partial-winname" matches only one existing
window.    If it matches more than one window, the most recently accessed window which it matches will
be used.

"Position-string" is a string of either 2 or 4 numbers, as follows:

Iconic windows "x y" (upper left corner of the icon)
Normal windows "upper-x upper-y lower-x lower-y"
Zoomed windows "x y" (upper left corner of the window)

All coordinates are relative to a virtual 1000x1000 screen.

This function works only with top-level (parent) application windows.
Examples:
WinPlaceSet(@ICON, "Clock", "10 950")

WinPlaceSet(@NORMAL, "Clock", "250 250 750 750")

WinPlaceSet(@ZOOMED, "Clock", "-5 -5")
See Also:

IconArrange, WinActivate, WinArrange, WinPlace, WinPlaceGet, WinState

WinPosition
Returns Window position.
Syntax:

WinPosition (partial-winname)
Parameters:

(s) partial-winname the initial part of, or an entire, winname.
Returns:

(s)  window coordinates, delimited by commas.

Returns the current window position information for the selected window.    It returns 4 comma-separated
numbers (see WinPlace for details).

This function works only with top-level (parent) application windows.
Example:
Run("clock.exe", "") ; start Clock
WinPlace(0,0,300,300, "Clock") ; place Clock
pos = WinPosition("Clock") ; save position
delay(2)
WinPlace(200,200,300,300, "Clock") ; move Clock
delay(2)
WinPlace(%pos%, "Clock") ; restore Clock

See Also:
WinGetActive, WinItemize, WinPlace, WinPlaceGet, WinState

WinResources
Returns information on available memory and resources.
Syntax:

WinResources (request#)
Parameters:

(i) request# see below
Returns:

(i)                              see below.

The value of request# determines the piece of information returned.

Req# Return value

0 Total available memory, in bytes
1 Theoretical maximum available memory, in bytes
2 Percent of free system resources (lower of GDI and USER)
3 Percent of free GDI resources
4 Percent of free USER resources

Example:
mem = WinResources(0)
Message("Available memory", "%mem% bytes")

See Also:
WinMetrics, WinParmGet

WinShow
Shows a window in its "normal" state.
Syntax:

WinShow (partial-winname)
Parameters:

(s) partial-winname either an initial portion of, or an entire window
name.    The most-recently used window whose
title matches the name will be shown.

Returns:
(i)                      @TRUE if a window was found to show;
                            @FALSE if no windows were found.

Use this function to restore a window to its "normal" size and position.
A partial-window name of "" (null string) restores the current WIL interpreter window.
Example:
RunZoom("notepad.exe", "")
; other processing...
WinShow("Notepad")

See Also:
WinArrange, WinHide, WinIconize, WinZoom

WinState
Returns the current state of a window.
Syntax:

WinState (partial-winname)
Parameters:

(s) partial-winnamethe initial part of, or an entire, window name.
Returns:

(i) window state (see below).

"Partial-windname" is the initial part of a window name, and may be a complete window name.    It is case-
sensitive.    You should specify enough characters so that "partial-winname" matches only one existing
window.    If it matches more than one window, the most recently accessed window which it matches will
be used.

Possible return values are as follows.

Value Symbolic name Meaning

-1 @HIDDEN Specified window exists, but is hidden
 0 @FALSE Specified window does not exist
 1 @ICON Specified window is iconic (minimized)
 2 @NORMAL Specified window is a normal window
 3 @ZOOMED Specified window is zoomed (maximized)

This function works only with top-level (parent) application windows.
Example:
If WinState("Notepad") == @ICON Then WinShow("Notepad")

See Also:
Run, WinExist, WinGetActive, WinHide, WinIconize, WinItemize, WinPlace, WinPlaceGet,
WinPlaceSet, WinPosition, WinShow, WinZoom

WinSysInfo() {*32}
Returns system configuration information.
Syntax:

WinSysInfo()
Parameters:

(none)
Returns:

(s) a TAB delimited list of system configuration information.

WinSysInfo returns a TAB-delimited list containing the following items:

1. computer name of the current system.
2. processor architecture.
3. page size (specifies granularity of page protection and commitment).
4. mask representing the set of processors configured into the system.
5. number of processors in the system.
6. processor type.
7. granularity in which memory will be allocated.
8. system's architecture-dependent processor level.
9. architecture-dependent processor revision.

Note: This function should be used instead of WinConfig in the 32-bit version.

Example:
sysinfo = WinSysInfo()
computer = ItemExtract(1, sysinfo, @TAB)
processor = ItemExtract(6, sysinfo, @TAB)
Message(computer, "is a %processor%")

See Also:
WinMetrics, WinParmGet, WinResources

WinTitle
Changes the title of a window.
Syntax:

WinTitle (partial-winname, new-name)
Parameters:

(s) partial-winname either an initial portion of, or an entire window name.    The most-
recently used window whose title matches the name will be shown.

(s) new-name the new name of the window.
Returns:

(i)                                      @TRUE if a window was found to rename;
                                      @FALSE if no windows were found.

Use this function to change a window's title.

A partial-window name of "" (null string) refers to the current WIL interpreter window.

Warning:    Some applications may rely upon their window's title staying the same!    Therefore, the
WinTitle function should be used with caution and adequate testing.

This function works only with top-level (parent) application windows.
Example:
; Capitalize title of window
htab = Num2Char(9)
allwinds = WinItemize()
mywin = AskItemList("Uppercase Windows", allwinds, htab, @unsorted,

@single)
WinTitle(mywin, StrUpper(mywin))
Drop(htab, allwinds, mywin)

See Also:
WinGetActive, WinItemize, WinName

WinVersion
Provides the version number of the current Windows system.
Syntax:

WinVersion (level)
Parameters:

(i) level either @MAJOR or @MINOR.
Returns:

(i) either major or minor part of the Windows version number.

Use this command to determine which version of Windows is currently running.

@MAJOR returns the integer part of the Windows version number;
 i.e. 1.0, 2.11, 3.0, etc.

@MINOR returns the decimal part of the Windows version number;
 i.e. 1.0, 2.11, 3.0, etc.

Example:
minorver = WinVersion(@MINOR)
majorver = WinVersion(@MAJOR)
Message("Windows Version", StrCat(majorver, ".", minorver))

See Also:
Version, DOSVersion

WinWaitClose
Suspends the WIL program execution until a specified window has been closed.
Syntax:

WinWaitClose (partial-winname)
Parameters:

(s) partial-winname either an initial portion of, or an entire window name.    WinWaitClose
suspends execution until all matching windows
have been closed.

Returns:
(i)  @TRUE if at least one window was found to wait for;
                                      @FALSE if no windows were found.

Use this function to suspend the WIL program's execution until the user has finished using a given
window and has manually closed it.
This function works only with top-level (parent) application windows.
Example:
Run("clock.exe", "")
Display(4, "Note", "Close Clock to continue")
WinWaitClose("Clock")
Message("Continuing...", "Clock closed")

See Also:
AppWaitClose, Delay, RunWait, WinExist, Yield

WinZoom
Maximizes a window to full-screen.
Syntax:

WinZoom (partial-winname)
Parameters:

(s) partial-winname either an initial portion of, or an entire window name.    The most-
recently used window whose title
matches the name will be shown.

Returns:
(i)  @TRUE if a window was found to zoom;
  @FALSE if no windows were found.

Use this function to "zoom" windows to full screen size.
A partial-winname of "" (null string) zooms the current WIL interpreter window.
This function works only with top-level (parent) application windows.
Example:
Run("notepad.exe", "")
WinZoom("Notepad")
Delay(3)
WinShow("Notepad")

See Also:
RunZoom, WinHide, WinIconize, WinPlace, WinShow

Yield
Provides time for other windows to do processing.
Syntax:

Yield
Parameters:

(none)
Returns:

(not applicable)

Use this command to give other running windows time to process.    This command will allow each open
window to process 20 or more messages.
Example:
; run Excel and give it some time to start up
sheet = AskLine ("Excel", "File to run:", "")
Run("excel.exe", sheet)
Yield
Yield
Yield

See Also:
TimeDelay, TimeWait, Exclusive

